特征模型(2)简单二阶系统的证明

摘要: 这是我在看书中的正式推导前自己的推导过程,只推导了二阶系统,比较简单,可以跳过本文直接看正式证明。正规的推导见 特征模型(3)证明全系数之和等于1
专栏全部文章见 基于特征模型的全系数自适应控制
  使用二阶特征模型
y ( k + 1 ) = f 1 ( k ) y ( k ) + f 2 ( k ) y ( k − 1 ) + g 0 ( k ) u ( k ) y(k+1)=f_1(k)y(k)+f_{2}(k)y(k-1)+g_0(k)u(k) y(k+1)=f1(k)y(k)+f2(k)y(k1)+g0(k)u(k)
对于二阶连续系统
y ¨ + a y ˙ + b y = c u \ddot y+a\dot y+by=cu y¨+ay˙+by=cu
写成可控标准型为
{ x ˙ 1 = x 2 x ˙ 2 = − b x 1 + a x 2 + c u y = x 1 \begin{cases} \dot x_1=x_2 \\ \dot x_2=-bx_1+ax_2+cu \\ y=x_1 \end{cases} x˙1=x2x˙2=bx1+ax2+cuy=x1
欧拉法离散化得到
x 1 ( k + 1 ) = x 1 ( k ) + x 2 ( k ) T x 2 ( k + 1 ) = x 2 ( k ) + ( − b x 1 ( k ) − a x 2 ( k ) + c u ( k ) ) T (1) \begin{aligned} x_1(k+1) =& x_1(k)+x_2(k)T\tag{1} \\ x_2(k+1) =& x_2(k)+(-bx_1(k)-ax_2(k)+cu(k))T \\ \end{aligned} x1(k+1)=x2(k+1)=x1(k)+x2(k)Tx2(k)+(bx1(k)ax2(k)+cu(k))T(1)
下面想办法消去 x 2 x_2 x2
x 2 ( k + 1 ) = x 1 ( k + 2 ) − x 1 ( k + 1 ) T = ( 1 − a T ) x 2 ( k ) − b T x 1 ( k ) + c T u ( k ) = x 1 ( k + 1 ) − x 1 ( k ) T ( 1 − a T ) − b T x 1 ( k ) + c T u ( k ) \begin{aligned} x_2(k+1) =& \frac{x_1(k+2)-x_1(k+1)}{T} \\ =& (1-aT)x_2(k)-bTx_1(k)+cTu(k) \\ =& \frac{x_1(k+1)-x_1(k)}{T}(1-aT)-bTx_1(k)+cTu(k) \end{aligned} x2(k+1)===Tx1(k+2)x1(k+1)(1aT)x2(k)bTx1(k)+cTu(k)Tx1(k+1)x1(k)(1aT)bTx1(k)+cTu(k)
得到
x 1 ( k + 2 ) − x 1 ( k + 1 ) = ( x 1 ( k + 1 ) − x 1 ( k ) ) ( 1 − a T ) + ( − b T x 1 ( k ) + c T u ( k ) ) T x 1 ( k + 2 ) = ( 2 − a T ) x 1 ( k + 1 ) − ( 1 − a T + b T 2 ) x 1 ( k ) + c T 2 u ( k ) (2) \begin{aligned} x_1(k+2)-x_1(k+1) =& (x_1(k+1)-x_1(k))(1-aT)+(-bTx_1(k)+cTu(k))T \\ x_1(k+2) =& (2-aT)x_1(k+1)-(1-aT+bT^2)x_1(k)+cT^2u(k)\tag{2} \end{aligned} x1(k+2)x1(k+1)=x1(k+2)=(x1(k+1)x1(k))(1aT)+(bTx1(k)+cTu(k))T(2aT)x1(k+1)(1aT+bT2)x1(k)+cT2u(k)(2)
重写为差分方程
y ( k ) = f 1 y ( k − 1 ) + f 2 y ( k − 2 ) + g u ( k − 2 ) y(k)=f_1y(k-1)+f_2y(k-2)+gu(k-2) y(k)=f1y(k1)+f2y(k2)+gu(k2)
其中
{ f 1 = 2 − a T f 2 = − ( 1 − a T + b T 2 ) g = c T 2 (3) \begin{cases} f_1=2-aT \\ f_2=-(1-aT+bT^2) \\ g=cT^2 \end{cases} \tag{3} f1=2aTf2=(1aT+bT2)g=cT2(3)
若将式(1)的后向欧拉式改为前向欧拉式
x 1 ( k + 1 ) = x 1 ( k ) + x 2 ( k + 1 ) T x_1(k+1)=x_1(k)+x_2(k+1)T x1(k+1)=x1(k)+x2(k+1)T
则式(2)变为
x 1 ( k + 1 ) = ( 2 − a T − b T 2 ) x 1 ( k ) − ( 1 − a T ) x 1 ( k − 1 ) + c T 2 u ( k ) x_1(k+1)=(2-aT-bT^2)x_1(k)-(1-aT)x_1(k-1)+cT^2u(k) x1(k+1)=(2aTbT2)x1(k)(1aT)x1(k1)+cT2u(k)
差分方程变为
y ( k + 1 ) = f 1 y ( k ) + f 2 y ( k − 1 ) + g u ( k ) y(k+1)=f_1y(k)+f_2y(k-1)+gu(k) y(k+1)=f1y(k)+f2y(k1)+gu(k)

y ( k ) = f 1 y ( k − 1 ) + f 2 y ( k − 2 ) + g u ( k − 1 ) y(k)=f_1y(k-1)+f_2y(k-2)+gu(k-1) y(k)=f1y(k1)+f2y(k2)+gu(k1)
写成特征模型的矩阵形式
y ( k ) = [ f 1 ( k ) f 2 ( k ) g ( k ) ] [ y ( k − 1 ) y ( k − 2 ) u ( k − 1 ) ] y(k)=\left[\begin{matrix} f_1(k) & f_2(k) & g(k) \end{matrix}\right] \left[\begin{matrix} y(k-1) \\ y(k-2) \\ u(k-1) \end{matrix}\right] y(k)=[f1(k)f2(k)g(k)] y(k1)y(k2)u(k1)
使用递推最小二乘辨识参数
K ( k ) = P ( k − 1 ) ϕ ( k ) 1 + ϕ T P ( k − 1 ) ϕ ( k ) θ ( k ) = θ ( k − 1 ) + K ( k ) ( y ( k ) − ϕ ( k ) T θ ( k − 1 ) ) P ( k ) = ( I − K ( k ) ϕ ( k ) T ) P ( k − 1 ) \begin{aligned} K(k) =& \frac{P(k-1)\phi(k)}{1+\phi^\mathrm{T}P(k-1)\phi(k)} \\ \theta(k) =& \theta(k-1)+K(k) (y(k)-\phi(k)^{\mathrm{T}} \theta(k-1)) \\ P(k) =& \left(I-K(k)\phi(k)^{\mathrm{T}}\right) P(k-1) \end{aligned} K(k)=θ(k)=P(k)=1+ϕTP(k1)ϕ(k)P(k1)ϕ(k)θ(k1)+K(k)(y(k)ϕ(k)Tθ(k1))(IK(k)ϕ(k)T)P(k1)
另外注意到不管哪种推导方式,待辨识的3个参数在采样周期 T T T很小时满足
f 1 ( k ) + f 2 ( k ) + g ( k ) = 1 − b T 2 + c T 2 ≈ 1 f_1(k)+f_2(k)+g(k)=1-bT^2+cT^2\approx 1 f1(k)+f2(k)+g(k)=1bT2+cT21
称为全系数之和等于 1 1 1,同时 f 1 f_1 f1 f 2 f_2 f2 g g g这3个参数都可以根据式(3)大概限制在一定范围内。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 3
    评论
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值