[闲云]大模型RAG检索增强的chunk_size分块大小设置问题:修改max_seq_length 参数需与修改 chunk_size配合

问题:docment文档节点node长度划分得不合适会则查询的答案可能分布在多个节点中,查询结果可能会不完整,如何解决?

问题:我用你的方法将max_seq_length到从128增大到256,测试或发现分的节点的长度没有变化,为何?

我的源代码:

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings,SimpleDirectoryReader,VectorStoreIndex
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.node_parser import SimpleNodeParser #可创建节点解释器

#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
    #指定了一个预训练的sentence-transformer模型的路径
    model_name="./llm/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
)

#将创建的嵌入模型赋值给全局设置的embed_model属性,这样在后续的索引构建过程中,就会使用这个模型
Settings.embed_model = embed_model

#使用HuggingFaceLLM加载本地大模型
llm = HuggingFaceLLM(model_name="./llm/Qwen1___5-0___5B-Chat",
               tokenizer_name="./llm/Qwen1___5-0___5B-Chat",
               model_kwargs={"trust_remote_code":True},
               tokenizer_kwargs={"trust_remote_code":True})
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm

#从指定目录读取文档,将数据加载到内存
documents = SimpleDirectoryReader("./data").load_data()
#创建节点解析器
node_parser = SimpleNodeParser.from_defaults(chunk_size=512)
#将文档分割成节点
base_node = node_parser.get_nodes_from_documents(documents=documents)
print(base_node)
print("=================================")

以下是deepseek深度思考回答:

好的,用户的问题是:“修改了chunk_size是否就可以不修改max_seq_length 了?” 我需要仔细分析这个问题。首先,用户之前调整了模型的max_seq_length,但发现分块长度没有变化,现在他们可能想了解这两个参数之间的关系。

首先,我应该回顾之前的对话。用户之前提到将max_seq_length从128增加到256,但分块长度没变。我解释过分块工具和模型参数是独立的,分块由chunk_size控制,而max_seq_length是模型处理输入的限制。现在用户的问题是关于修改chunk_size是否可以替代调整max_seq_length。

需要明确,chunk_size和max_seq_length是两个不同的参数,分别控制分块的长度和模型处理的最大序列长度。如果用户只调整chunk_size而不改max_seq_length,可能会出现什么问题?

比如,当分块后的文本在token化后超过模型的max_seq_length时,模型会自动截断,导致信息丢失。因此,即使分块工具设置了较大的chunk_size,如果模型的max_seq_length较小,仍然会被截断。反之,如果chunk_size设置得比max_seq_length允许的token数小,可能不需要调整max_seq_length,但通常需要两者协调。

用户可能没有完全理解这两个参数之间的依赖关系,或者认为只需要调整其中一个即可。需要进一步解释两者的关系,以及为何需要同时调整。

可能还需要举例说明,比如chunk_size按字符设置,而max_seq_length按token数,这两者如何转换。比如中文中,一个汉字可能对应多个token,所以字符数不等于token数。如果chunk_size设为256字符,而max_seq_length保持128,可能会导致实际token超过128,从而被截断。

因此,正确的做法是同时调整chunk_size和max_seq_length,确保分块后的文本在token化后不超过模型的max_seq_length。或者,使用TokenTextSplitter按token数分块,并设置chunk_size不超过max_seq_length减去特殊token的数量。

用户可能希望简化操作,但需要明白这两个参数需要配合使用,不能只改一个。需要强调两者的协同作用,以及如何根据分块策略调整模型参数。

总结回答时,需要分点说明两者的关系,使用场景,以及是否需要同时调整。可能还需要给出具体建议,比如优先使用TokenTextSplitter,并确保chunk_size不超过max_seq_length减去特殊token的数量,这样可能不需要调整max_seq_length,但具体情况取决于模型和分块方式。

在 sentence-transformers 或基于 Transformer 的模型中,修改 chunk_size 和调整 max_seq_length 是两个独立但需要协同工作的操作。是否可以不修改 max_seq_length 取决于以下关键点:

1. 核心关系:chunk_size 与 max_seq_length 的作用

  • chunk_size:由分块工具(如 CharacterTextSplitter 或 TokenTextSplitter)控制,决定文本如何分割为节点(chunks)。它可以是字符数、单词数或 token 数。

  • max_seq_length:由模型定义,表示模型能处理的最大 token 数量(包括特殊 token,如 [CLS] 和 [SEP])。超长的输入会被截断。

修改 chunk_size 可以改变分块的长度,但 必须确保分块后的文本在 token 化后不超过 max_seq_length,否则模型会截断超长的输入,导致信息丢失。


2. 是否可以不修改 max_seq_length

取决于以下场景:

场景 1:chunk_size 的度量单位是字符或单词
  • 如果 chunk_size 按字符或单词分割(例如 chunk_size=256 字符),而 max_seq_length=128(按 token 计算),则:

    • 可能仍需调整 max_seq_length:因为字符数或单词数与 token 数不直接对应(尤其是中文,一个汉字可能对应 1-2 个 token)。

    • 示例

      • 中文文本 chunk_size=256 字符,实际 token 数可能超过 max_seq_length=128,导致截断。

场景 2:chunk_size 的度量单位是 token
  • 如果使用 TokenTextSplitter 直接按 token 数分块(例如 chunk_size=250),且满足:

    python

    chunk_size + num_special_tokens <= max_seq_length
     

    (其中 num_special_tokens 是模型添加的特殊 token 数量,如 [CLS] 和 [SEP],通常为 1-2 个)

    • 可以不修改 max_seq_length:只要分块后的 token 数不超过模型原有的 max_seq_length


3. 是否需要同时调整两者?

分块策略是否需要调整 max_seq_length?说明
按字符/单词分块通常需要调整字符/单词数与 token 数不匹配,需确保 max_seq_length 足够容纳分块后的 token 数。
按 token 分块可能不需要调整若 chunk_size 已适配 max_seq_length(例如 chunk_size=250max_seq_length=256)。
模型原生支持长文本无需调整例如使用 bert-base(原生支持 512 token),分块直接设为 chunk_size=510

4. 具体建议

情况 1:仅修改 chunk_size(不调整 max_seq_length
  • 适用条件

    • 分块工具按 token 数分块(如 TokenTextSplitter)。

    • 分块的 token 数 chunk_size + 特殊 token 数 ≤ 模型原始的 max_seq_length

  • 示例

    python

    from langchain.text_splitter import TokenTextSplitter
    from transformers import AutoTokenizer
    
    tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
    model_max_length = tokenizer.model_max_length  # 假设为 128
    
    # 按 token 分块,预留空间给特殊 token(如 [CLS] 和 [SEP])
    text_splitter = TokenTextSplitter(
        chunk_size=model_max_length - 2,  # 128 - 2 = 126
        chunk_overlap=20,
        tokenizer=tokenizer.encode
    )
     
情况 2:同时修改 chunk_size 和 max_seq_length
  • 适用条件

    • 需要处理更长的文本(例如从 128 token 扩展到 256 token)。

    • 模型支持更大的 max_seq_length(如某些模型可通过 model.max_seq_length = 512 调整)。

  • 示例

    python

    from sentence_transformers import SentenceTransformer
    
    model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2")
    model.max_seq_length = 256  # 调整模型支持的最大长度
    
    # 按 token 分块,适配新的 max_seq_length
    text_splitter = TokenTextSplitter(
        chunk_size=254,  # 256 - 2(特殊 token)
        chunk_overlap=50,
        tokenizer=tokenizer.encode
    )
     

5. 验证步骤

无论是否调整 max_seq_length,都应验证分块后的 token 长度:

python

for chunk in chunks:
    tokens = tokenizer.encode(chunk, add_special_tokens=True)
    assert len(tokens) <= model.max_seq_length, "分块超出模型限制!"
 

总结

  • 可以不修改 max_seq_length 的条件
    使用 TokenTextSplitter 按 token 分块,且 chunk_size ≤ max_seq_length - num_special_tokens

  • 需要修改 max_seq_length 的条件
    分块后的 token 数超过模型默认限制,或分块策略基于字符/单词(需预留 token 空间)。

实际场景中,建议同时按 token 分块并适配 max_seq_length,以充分利用模型能力并避免截断。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值