问题:docment文档节点node长度划分得不合适会则查询的答案可能分布在多个节点中,查询结果可能会不完整,如何解决?
问题:我用你的方法将max_seq_length到从128增大到256,测试或发现分的节点的长度没有变化,为何?
我的源代码:
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.core import Settings,SimpleDirectoryReader,VectorStoreIndex
from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.node_parser import SimpleNodeParser #可创建节点解释器
#初始化一个HuggingFaceEmbedding对象,用于将文本转换为向量表示
embed_model = HuggingFaceEmbedding(
#指定了一个预训练的sentence-transformer模型的路径
model_name="./llm/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
)
#将创建的嵌入模型赋值给全局设置的embed_model属性,这样在后续的索引构建过程中,就会使用这个模型
Settings.embed_model = embed_model
#使用HuggingFaceLLM加载本地大模型
llm = HuggingFaceLLM(model_name="./llm/Qwen1___5-0___5B-Chat",
tokenizer_name="./llm/Qwen1___5-0___5B-Chat",
model_kwargs={"trust_remote_code":True},
tokenizer_kwargs={"trust_remote_code":True})
#设置全局的llm属性,这样在索引查询时会使用这个模型。
Settings.llm = llm
#从指定目录读取文档,将数据加载到内存
documents = SimpleDirectoryReader("./data").load_data()
#创建节点解析器
node_parser = SimpleNodeParser.from_defaults(chunk_size=512)
#将文档分割成节点
base_node = node_parser.get_nodes_from_documents(documents=documents)
print(base_node)
print("=================================")
以下是deepseek深度思考回答:
好的,用户的问题是:“修改了chunk_size是否就可以不修改max_seq_length 了?” 我需要仔细分析这个问题。首先,用户之前调整了模型的max_seq_length,但发现分块长度没有变化,现在他们可能想了解这两个参数之间的关系。
首先,我应该回顾之前的对话。用户之前提到将max_seq_length从128增加到256,但分块长度没变。我解释过分块工具和模型参数是独立的,分块由chunk_size控制,而max_seq_length是模型处理输入的限制。现在用户的问题是关于修改chunk_size是否可以替代调整max_seq_length。
需要明确,chunk_size和max_seq_length是两个不同的参数,分别控制分块的长度和模型处理的最大序列长度。如果用户只调整chunk_size而不改max_seq_length,可能会出现什么问题?
比如,当分块后的文本在token化后超过模型的max_seq_length时,模型会自动截断,导致信息丢失。因此,即使分块工具设置了较大的chunk_size,如果模型的max_seq_length较小,仍然会被截断。反之,如果chunk_size设置得比max_seq_length允许的token数小,可能不需要调整max_seq_length,但通常需要两者协调。
用户可能没有完全理解这两个参数之间的依赖关系,或者认为只需要调整其中一个即可。需要进一步解释两者的关系,以及为何需要同时调整。
可能还需要举例说明,比如chunk_size按字符设置,而max_seq_length按token数,这两者如何转换。比如中文中,一个汉字可能对应多个token,所以字符数不等于token数。如果chunk_size设为256字符,而max_seq_length保持128,可能会导致实际token超过128,从而被截断。
因此,正确的做法是同时调整chunk_size和max_seq_length,确保分块后的文本在token化后不超过模型的max_seq_length。或者,使用TokenTextSplitter按token数分块,并设置chunk_size不超过max_seq_length减去特殊token的数量。
用户可能希望简化操作,但需要明白这两个参数需要配合使用,不能只改一个。需要强调两者的协同作用,以及如何根据分块策略调整模型参数。
总结回答时,需要分点说明两者的关系,使用场景,以及是否需要同时调整。可能还需要给出具体建议,比如优先使用TokenTextSplitter,并确保chunk_size不超过max_seq_length减去特殊token的数量,这样可能不需要调整max_seq_length,但具体情况取决于模型和分块方式。
在 sentence-transformers
或基于 Transformer 的模型中,修改 chunk_size
和调整 max_seq_length
是两个独立但需要协同工作的操作。是否可以不修改 max_seq_length
取决于以下关键点:
1. 核心关系:chunk_size
与 max_seq_length
的作用
-
chunk_size
:由分块工具(如CharacterTextSplitter
或TokenTextSplitter
)控制,决定文本如何分割为节点(chunks)。它可以是字符数、单词数或 token 数。 -
max_seq_length
:由模型定义,表示模型能处理的最大 token 数量(包括特殊 token,如[CLS]
和[SEP]
)。超长的输入会被截断。
修改 chunk_size
可以改变分块的长度,但 必须确保分块后的文本在 token 化后不超过 max_seq_length
,否则模型会截断超长的输入,导致信息丢失。
2. 是否可以不修改 max_seq_length
?
取决于以下场景:
场景 1:chunk_size
的度量单位是字符或单词
-
如果
chunk_size
按字符或单词分割(例如chunk_size=256 字符
),而max_seq_length=128
(按 token 计算),则:-
可能仍需调整
max_seq_length
:因为字符数或单词数与 token 数不直接对应(尤其是中文,一个汉字可能对应 1-2 个 token)。 -
示例:
-
中文文本
chunk_size=256 字符
,实际 token 数可能超过max_seq_length=128
,导致截断。
-
-
场景 2:chunk_size
的度量单位是 token
-
如果使用
TokenTextSplitter
直接按 token 数分块(例如chunk_size=250
),且满足:python
chunk_size + num_special_tokens <= max_seq_length
(其中
num_special_tokens
是模型添加的特殊 token 数量,如[CLS]
和[SEP]
,通常为 1-2 个)-
可以不修改
max_seq_length
:只要分块后的 token 数不超过模型原有的max_seq_length
。
-
3. 是否需要同时调整两者?
分块策略 | 是否需要调整 max_seq_length ? | 说明 |
---|---|---|
按字符/单词分块 | 通常需要调整 | 字符/单词数与 token 数不匹配,需确保 max_seq_length 足够容纳分块后的 token 数。 |
按 token 分块 | 可能不需要调整 | 若 chunk_size 已适配 max_seq_length (例如 chunk_size=250 ,max_seq_length=256 )。 |
模型原生支持长文本 | 无需调整 | 例如使用 bert-base (原生支持 512 token),分块直接设为 chunk_size=510 。 |
4. 具体建议
情况 1:仅修改 chunk_size
(不调整 max_seq_length
)
-
适用条件:
-
分块工具按 token 数分块(如
TokenTextSplitter
)。 -
分块的 token 数
chunk_size
+ 特殊 token 数 ≤ 模型原始的max_seq_length
。
-
-
示例:
python
from langchain.text_splitter import TokenTextSplitter from transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") model_max_length = tokenizer.model_max_length # 假设为 128 # 按 token 分块,预留空间给特殊 token(如 [CLS] 和 [SEP]) text_splitter = TokenTextSplitter( chunk_size=model_max_length - 2, # 128 - 2 = 126 chunk_overlap=20, tokenizer=tokenizer.encode )
情况 2:同时修改 chunk_size
和 max_seq_length
-
适用条件:
-
需要处理更长的文本(例如从 128 token 扩展到 256 token)。
-
模型支持更大的
max_seq_length
(如某些模型可通过model.max_seq_length = 512
调整)。
-
-
示例:
python
from sentence_transformers import SentenceTransformer model = SentenceTransformer("sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2") model.max_seq_length = 256 # 调整模型支持的最大长度 # 按 token 分块,适配新的 max_seq_length text_splitter = TokenTextSplitter( chunk_size=254, # 256 - 2(特殊 token) chunk_overlap=50, tokenizer=tokenizer.encode )
5. 验证步骤
无论是否调整 max_seq_length
,都应验证分块后的 token 长度:
python
for chunk in chunks:
tokens = tokenizer.encode(chunk, add_special_tokens=True)
assert len(tokens) <= model.max_seq_length, "分块超出模型限制!"
总结
-
可以不修改
max_seq_length
的条件:
使用TokenTextSplitter
按 token 分块,且chunk_size
≤max_seq_length - num_special_tokens
。 -
需要修改
max_seq_length
的条件:
分块后的 token 数超过模型默认限制,或分块策略基于字符/单词(需预留 token 空间)。
实际场景中,建议同时按 token 分块并适配 max_seq_length
,以充分利用模型能力并避免截断。