pyqt5 可视化界面 OpenCV dnn模块调用yolov4 weight和cfg 实现目标检测界面可视化(yolov4-pyqt)

本文详细介绍了如何使用PyQt5设计用户界面,配合OpenCV的dnn模块加载和运行Yolov4模型进行目标检测,并将结果实时展示在界面上。涵盖了从界面设计到模型调用的全过程,适合深度学习和GUI编程爱好者学习。
摘要由CSDN通过智能技术生成

一、总述

目标检测界面可视化分为三个部分:PyQt5界面设计、OpenCV的dnn模块调用以及Yolov4模型的使用。(1)在PyQt5中创建用户界面,可以使用Qt Designer来设计界面,生成对应的.ui文件,然后使用pyuic将.ui文件转换成.py文件,再在Python代码中引入这些界面文件,并添加相应的逻辑和功能。(2)利用OpenCV的dnn模块加载Yolov4模型进行目标检测。你需要确保已经安装了OpenCV库,并且需要下载Yolov4的权重文件和配置文件。然后,你可以使用OpenCV的dnn模块来加载Yolov4模型,读取图像,进行目标检测,并在图像上绘制检测结果。(3)将这两部分结合起来,即在PyQt5的界面中添加控件用于显示图像,并在后台调用OpenCV的dnn模块进行目标检测。你需要编写代码来实现界面和后台的交互,例如在界面中添加按钮或菜单来触发图像的加载和目标检测操作,以及将检测结果显示在界面上。这个过程涉及到PyQt5的界面设计和事件处理,OpenCV的dnn模块的使用,以及Yolov4模型的加载和目标检测。

二、界面:

三、图片检测:

四、视频检测:

pyqt5-yolov4 可视化界面代码分享: pyqt5可视化界面OpenCVdnn模块调用yolov4实现目标检测界面可视化(yolov4-pyqt)-深度学习文档类资源-CSDN下载

PyQt5YOLOv5是两个不同的工具,PyQt5是一个Python的GUI框架,而YOLOv5是一个目标检测算法。 如果你想使用PyQt5来创建一个GUI界面,然后将YOLOv5算法应用于该界面中的图像,那么可以考虑使用OpenCV库来读取和处理图像,并使用YOLOv5算法进行目标检测,然后将结果在PyQt5界面上显示。具体实现可以参考以下步骤: 1. 安装PyQt5OpenCV库 2. 下载YOLOv5的代码和模型文件,将其放置在您的工作目录中 3. 创建一个PyQt5的GUI界面,包括一个图像显示控件和一个按钮 4. 使用OpenCV库读取图像,将其传递给YOLOv5算法进行目标检测 5. 将检测结果在PyQt5界面上显示 以下是一个简单的示例代码,可以供您参考: ```python import sys import cv2 import numpy as np from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel, QPushButton from PyQt5.QtGui import QImage, QPixmap class MainWindow(QMainWindow): def __init__(self): super().__init__() # 创建一个按钮 self.button = QPushButton('Detect', self) self.button.move(10, 10) self.button.clicked.connect(self.detect) # 创建一个图像显示控件 self.label = QLabel(self) self.label.setGeometry(10, 50, 640, 480) self.label.setScaledContents(True) # 加载YOLOv5模型 self.net = cv2.dnn.readNet('yolov5.weights', 'yolov5.cfg') def detect(self): # 读取图像 image = cv2.imread('image.jpg') # 运行YOLOv5算法进行目标检测 blob = cv2.dnn.blobFromImage(image, 1/255.0, (416, 416), swapRB=True, crop=False) self.net.setInput(blob) outputs = self.net.forward() # 处理检测结果 for output in outputs: for detection in output: scores = detection[5:] classId = np.argmax(scores) confidence = scores[classId] if confidence > 0.5: x, y, w, h = detection[:4] * np.array([image.shape[1], image.shape[0], image.shape[1], image.shape[0]]) x = int(x - w/2) y = int(y - h/2) w = int(w) h = int(h) cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) # 显示图像 image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) qimage = QImage(image.data, image.shape[1], image.shape[0], QImage.Format_RGB888) pixmap = QPixmap(qimage) self.label.setPixmap(pixmap) if __name__ == '__main__': app = QApplication(sys.argv) window = MainWindow() window.show() sys.exit(app.exec_()) ``` 注意,上述代码仅作为参考,实际应用中需要考虑更多的情况和细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值