pyqt5 可视化界面 OpenCV dnn模块调用yolov4 weight和cfg 实现目标检测界面可视化(yolov4-pyqt)

本文详细介绍了如何使用PyQt5设计用户界面,配合OpenCV的dnn模块加载和运行Yolov4模型进行目标检测,并将结果实时展示在界面上。涵盖了从界面设计到模型调用的全过程,适合深度学习和GUI编程爱好者学习。
摘要由CSDN通过智能技术生成

一、总述

目标检测界面可视化分为三个部分:PyQt5界面设计、OpenCV的dnn模块调用以及Yolov4模型的使用。(1)在PyQt5中创建用户界面,可以使用Qt Designer来设计界面,生成对应的.ui文件,然后使用pyuic将.ui文件转换成.py文件,再在Python代码中引入这些界面文件,并添加相应的逻辑和功能。(2)利用OpenCV的dnn模块加载Yolov4模型进行目标检测。你需要确保已经安装了OpenCV库,并且需要下载Yolov4的权重文件和配置文件。然后,你可以使用OpenCV的dnn模块来加载Yolov4模型,读取图像,进行目标检测,并在图像上绘制检测结果。(3)将这两部分结合起来,即在PyQt5的界面中添加控件用于显示图像,并在后台调用OpenCV的dnn模块进行目标检测。你需要编写代码来实现界面和后台的交互,例如在界面中添加按钮或菜单来触发图像的加载和目标检测操作,以及将检测结果显示在界面上。这个过程涉及到PyQt5的界面设计和事件处理,OpenCV的dnn模块的使用,以及Yolov4模型的加载和目标检测。

二、界面:

三、图片检测:

四、视频检测:

pyqt5-yolov4 可视化界面代码分享: pyqt5可视化界面OpenCVdnn模块调用yolov4实现目标检测界面可视化(yolov4-pyqt)-深度学习文档类资源-CSDN下载

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值