低光图像增强:DEFormer: DCT-driven Enhancement Transformer for Low-light Image and Dark Vision

论文作者:Xiangchen Yin,Zhenda Yu,Xin Gao,Ran Ju,Xiao Sun,Xinyu Zhang

作者单位:University of Science and Technology of China; Hefei Comprehensive National Science Center; Anhui University; Hefei University of Technology; Tsinghua University

论文链接:http://arxiv.org/abs/2309.06941v1

内容简介:

1)方向:低光图像增强

2)应用:可应用于自动驾驶

3)背景:低光图像增强的目标是恢复图像的颜色和细节,对于自动驾驶中的高级视觉任务具有重要意义。然而,仅依靠RGB领域很难恢复暗区域的丢失细节。

4)方法:本文提出了一个可学习的频域分支(LFB),用于频域增强,包括DCT处理和基于曲率的频域增强(CFE)。 CFE计算每个通道的曲率以表示不同频段的细节丰富程度,然后将频率特征分为不同频段,侧重于纹理丰富的频段。此外,提出了一个交叉域融合(CDF)以减小RGB领域和频域之间的差异。同时,将DEFormer用作暗区检测的预处理,有效提升了检测器的性能,在ExDark和DARK FACE数据集上的mAP分别提高了2.1%和3.4%。

5)结果:实验证明,DEFormer方法在低光照图像增强方面取得了显著的成果,特别是在暗区检测中,使检测器的性能得到了明显提升,ExDark和DARK FACE数据集的mAP分别提高了2.1%和3.4%。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值