报错:
RuntimeError: CUDA out of memory. Tried to allocate 512.00 MiB (GPU 0; 8.00 GiB total capacity; 5.86 GiB already allocated; 156.97 MiB free; 3.25 MiB cached)
解决方法:只能调调batch_size,改改模型啥的
主要想记录:
with torch.no_grad():#必须有
summary(net,input_size=(3, 512, 512),batch_size=1)
可以获得下列信息:
Total params: 118,008,915
Trainable params: 75,508,755
Non-trainable params: 42,500,160
----------------------------------------------------------------
Input size (MB): 3.00
Forward/backward pass size (MB): 8806.50
Params size (MB): 450.17
Estimated Total Size (MB): 9259.67
-----------------------------------------
其中params明显是占用GPU内存的主要原因,我的8G明显是太渣了。。
浅谈深度学习:如何计算模型以及中间变量的显存占用大小