点积
a*b=x1x2+y1y2
a*b=|a||b|cos&
二维空间中几何意义:
a和b之间的夹角
叉积
模长:|c|=|a×b|=|a||b|sinθ
二维空间中几何意义:
1.向量a,b共起点时,所构成平行四边形的面积
2.c.z=a.x*b.y-b.x*a.y=k,如果k>0时,b在a的顺时针方向(0-180°),如果k<0,b在a的逆时针方向(0-180°),如果k=0 那么a,b向量平行或共线,k值可以决定b在a的左或右
额外知识点
三个向量的混合积
几何意义:混合积[abc]=(a×b)·c可以得到以a,b,c为棱的平行六面体的体积。
混合积正负的几何意义:混合积 (a,b,c) 的符号是正还是负取决于 ∠ (a×b , c ) 是锐角还是钝角,即 a×b 与 c 是指向 a , b 所在平面的同侧还是异侧