三维点云处理-chap1

本文介绍了PCA(主成分分析)和Kernel PCA在三维点云处理中的作用。PCA通过寻找最大方差的方向进行降维,而Kernel PCA则通过核函数将数据映射到高维空间,使得原本线性不可分的数据变得可分。文章还讨论了法向量计算、滤波和点云降采样的方法,并提到了深度学习在点云处理中的应用。
摘要由CSDN通过智能技术生成

1.介绍

2.PCA&KPCA

(1)PCA
主成分分析
在这里插入图片描述
SVD;
在这里插入图片描述
矩阵分解M:
U和V*都是正交矩阵,这里相当于旋转
Σ这里是缩放,一个对角阵,对角线储存了M的特征值.

A是对称矩阵有这么个性质,跟上面SVD很相似,不过左右是同一个U
在这里插入图片描述
跟上面的SVD联系起来看,这定理实际讲的是A可以拉长或者缩短这个向量多少倍(取决于Σ,因为旋转不改变大小)
在这里插入图片描述
公式Rayleigh quotients证明:
在这里插入图片描述
PCA是啥:
投影到一个方向(z1,…zk为k个最大方差方向)上方差最大
在这里插入图片描述
两个向量的内积就是投影
在这里插入图片描述
第三行可以想到Rayleigh Quotients:
在这里插入图片描述
上面U1就是Ur的第一列,也就是z1,上面分解H为何是Σ平方,因为X可以进一步SVD分解:
在这里插入图片描述
把X写成SVD的形式
除掉z1的那部分继续重复以上步骤,算出z2
在这里插入图片描述
发现这个矩阵的U的第一列就是原来的矩阵的Ur的第二列。
总结:
在这里插入图片描述

PCA降维:n–>l

在这里插入图片描述
例子:
在这里插入图片描述
上面第一列是平均值
第二列是用一个主向量z1重构
最后一列用六个主向量重构,可以看到非常接近了。
对ai做聚类可以做数字的识别。

(2)kernel PCA
在数据不是线性的情况下怎么办?

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值