反常积分的敛散性判别

参考武老师强化讲义:

1.反常积分可以直接计算得值,那么一定收敛:

这一题的B,D就可以直接计算出值,那么一定收敛。

2.比较法:

对于这题的C可以用比较法:

比较难的一题:

3.p积分:

 关于p积分的结论,最基本的就不写了:

① 常规型:

②   \frac{1}{xlnx}型:

要记住两个常用的结论:

1/xlnx发散,\frac{1}{xln^2x}收敛

2024年就用到了:

答案:B

选项③中,就可以把f(x)=\frac{1}{xln^2x}作为范例。

选项①的反例可以取:\frac{1}{1+x}

③ \frac{lnx}{x}

2022年数二:

根据结论,就可以选出A


这里额外列举一些判敛散的题,这些题举出反例都是比较容易的:


对于一些经典的反例可以看看我总结的:

高数经典反例记录(全面总结)_高数中的概念反例-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值