PyTorch基础(六)迁移学习

在实际工程中,基本没有人会从零开始(随机初始化)训练一个完整的卷积网络,因为相对于网络,很难得到一个足够大的数据集(网络很深,需要足够大数据集)。通常的做法是在一个很大的数据集上进行预训练得到卷积网络ConvNet,然后将这个ConvNet的参数作为目标任务的初始化参数或者固定这些参数。

迁移学习的两个使用场景

  • 微调(Fine-tune)Convnet:使用预训练的网络(如在imagenet 1000上训练而来的网络)来初始化自己的网络,而不是随机初始化。其他的训练步骤不变。
  • 将Convnet看成固定的特征提取器 :首先固定ConvNet处理最后的全连接层外的其他所有层。最后的全连接层被替换成一个新的随机初始化的层,只有这个新的层会被训练【只有这层的参数会在反向传播时更新】

下面是利用PyTorch进行迁移学习的步骤,要解决的问题是训练一个模型来对蚂蚁和蜜蜂进行分类。

#!/usr/bin/env torch
# -*- coding:utf-8 -*-
# @Time  : 2021/2/7, 14:08
# @Author: Lee
# @File  : classify_ants_bees.py

# 导入相关的包
from __future__ import print_function, division

import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import numpy as np
import torchvision
from torchvision import datasets, models, transforms
import matplotlib.pyplot as plt
import time
import os
import copy

plt.ion()  # plt绘图使用交互模式,而不是默认的阻塞模式,绘制第一个figure后继续执行后面的程序,可绘制多张figure

# 加载数据
# 训练集数据扩充和归一化, 在验证集上仅需归一化
data_transforms = {
    'train': transforms.Compose([
        transforms.RandomResizedCrop(224),  # 随机剪裁一个area然后再resize
        transforms.RandomHorizontalFlip(),  # 随机水平翻转
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.2225])
    ]),
    'val': transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.2225])
    ]),
}

data_dir = 'data/hymenoptera_data'
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
                                           data_transforms[x])
                  for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4,
                                               shuffle=True, num_workers=4)
               for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_name = image_datasets['train'].classes

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")


# 可视化部分图像数据,以便了解数据扩充
def imshow(inp, title=None):
    """
    Imshow for tensor
    """
    inp = inp.numpy().transpose((1, 2, 0))
    mean = np.array([0.485, 0.456, 0.406])
    std = np.array([0.229, 0.224, 0.2225])
    inp = std * inp + mean
    inp = np.clip(inp, 0, 1)
    plt.imshow(inp)
    if title is not None:
        plt.title(title)
    plt.pause(0.001)  # pause a bit so that plots are updated


# 训练模型,编写一个通用函数来训练模型
def train_model(model, criterion, optimizer, scheduler, num_epochs=25):
    since = time.time()

    best_model_wts = copy.deepcopy(model.state_dict())
    best_acc = 0.0

    for epoch in range(num_epochs):
        print('Epoch {}/{}'.format(epoch, num_epochs - 1))
        print('-' * 10)

        # 每个epoch都有一个训练和验证阶段
        for phase in ['train', 'val']:
            if phase == 'train':
                # scheduler.step()
                model.train()  # Set model to train mode
            else:
                model.eval()  # Set model to evaluate mode

            running_loss = 0.0
            running_corrects = 0

            # 迭代数据
            for inputs, labels in dataloaders[phase]:
                inputs = inputs.to(device)
                labels = labels.to(device)

                # 零参数梯度
                optimizer.zero_grad()

                # 前向传播 track history if only in train
                with torch.set_grad_enabled(phase == 'train'):
                    outputs = model(inputs)
                    _, preds = torch.max(outputs, 1)
                    loss = criterion(outputs, labels)

                    # 后向传播,尽在训练集阶段优化
                    if phase == 'train':
                        loss.backward()
                        optimizer.step()

                # 统计
                running_loss += loss.item() * inputs.size(0)
                running_corrects += torch.sum(preds == labels.data)

            epoch_loss = running_loss / dataset_sizes[phase]
            epoch_acc = running_corrects.double() / dataset_sizes[phase]

            print('{} Loss: {:.4f} Acc: {:.4f}'.format(
                phase, epoch_loss, epoch_acc))

            # 深度拷贝
            if phase == 'val' and epoch_acc > best_acc:
                best_acc = epoch_acc
                best_model_wts = copy.deepcopy(model.state_dict())

        if phase == 'train':
            scheduler.step()

        print()

    time_elapsed = time.time() - since
    print('Training complete in {:.0f}m {:.0f}s'.format(
        time_elapsed // 60, time_elapsed % 60))
    print('Best val Acc: {:.4f}'.format(best_acc))

    # 加载最佳模型权重
    model.load_state_dict(best_model_wts)
    return model


# 可视化模型的预测结果
def visualize_model(model, num_images=6):
    was_training = model.training
    model.eval()
    image_so_far = 0
    fig = plt.figure()

    with torch.no_grad():
        for i ,(inputs, labels) in enumerate(dataloaders['val']):
            inputs = inputs.yo(device)
            labels = labels.to(device)

            outputs = model(inputs)
            _, preds = torch.max(outputs, 1)

            for j in range(inputs.size()[0]):
                image_so_far += 1
                ax = plt.subplot(num_images // 2, 3, image_so_far)
                ax.axis('off')
                ax.set_title('predicted: {}'.format(class_name[preds[j]]))
                imshow(inputs.cpu().data[j])

                if image_so_far == num_images:
                    model.train(mode=was_training)
                    return
        model.train(mode=was_training)


if __name__ == '__main__':
    pass

定义好相关的函数后,在以下各种情况下调用函数,首先,先可视化部分训练图像,以便充分了解数据扩充,其主函数如下:

if __name__ == '__main__':
    # 获取一批训练数据
    inputs, classes = next(iter(dataloaders['train']))
    # 批量制作网络
    out = torchvision.utils.make_grid(inputs)
    imshow(out, title=[class_name[x] for x in classes])
    plt.pause(0)  # 避免图像一闪而过

运行结果如下:

然后,微调ConvNet,加载预训练模型并重置最终全连接层,并进行训练:其主函数如下:

if __name__=='__main__': 
    model_ft = models.resnet18(pretrained=True)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, 2)

    model_ft = model_ft.to(device)
    criterion = nn.CrossEntropyLoss()

    # 观察所有参数都正在优化
    optimizier_ft = optim.SGD(model_ft.parameters(), lr=0.001, momentum=0.9)
    # 每7个epochs衰减LR通过设置gamma=0.1
    exp_lr_scheduler = lr_scheduler.StepLR(optimizier_ft, step_size=7, gamma=0.1)
    model_ft = train_model(model_ft, criterion, optimizier_ft, exp_lr_scheduler,     
               num_epochs=25)
    # 保存模型
    torch.save(model_ft, 'models/model')  # 此处暂时以保存整个模型结构和参数为例

训练过程中打印如下(省略部分):

Epoch 0/24
----------
train Loss: 0.5123 Acc: 0.7172
val Loss: 0.2224 Acc: 0.9281

Epoch 1/24
----------
train Loss: 0.4808 Acc: 0.8033
val Loss: 0.2503 Acc: 0.9020

...


Epoch 19/24
----------
train Loss: 0.3454 Acc: 0.8770
val Loss: 0.1923 Acc: 0.9542

...

Epoch 23/24
----------
train Loss: 0.2384 Acc: 0.8975
val Loss: 0.2453 Acc: 0.9150

Epoch 24/24
----------
train Loss: 0.3968 Acc: 0.8566
val Loss: 0.3225 Acc: 0.9085

Training complete in 37m 15s
Best val Acc: 0.9542

再调用上面训练好的模型,并做可视化预测,代码如下:

    model_ft = torch.load('models/model')  # 加载模型
    visualize_model(model_ft)
    plt.pause(0)

运行得到如下结果:

然后,再将ConvNet作为固定特征提取器,在这里需要冻结除最后一层之外的所有网络。通过设置requires_grad=Falsebackward()来冻结参数,这样反向传播backward()的时候它们的梯度就不会被计算。主函数代码如下:

if __name__ == '__main__':
    # ConvNet作为特征提取器
    """
    在这里需要冻结最后一层之外的所有网络。通过设置requires_grad = Falsebackward()来冻结
    参数,这样在反向传播backward()的时候它们的梯度就不会被计算
    """
    model_conv = torchvision.models.resnet18(pretrained=True)
    for param in model_conv.parameters():
        param.requires_grad = False

    # Parameters of newly constructed modules have requires_grad = True by default
    num_ftrs = model_conv.fc.in_features
    model_conv.fc = nn.Linear(num_ftrs, 2)
    model_conv = model_conv.to(device)
    criterion = nn.CrossEntropyLoss()

    # Oberseve that parameters of final layer are being optimized as opposed to before
    optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr=0.001, momentum=0.9)
    # Decay LR by a factor of 0.1 every 7 epochs
    exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
    model_conv = train_model(model_conv, criterion, optimizer_conv, exp_lr_scheduler,                     
                  num_epochs=25)
    torch.save(model_conv, 'models/model_conv')

运行该程序,训练过程打印如下(有部分省略):

Epoch 0/24
----------
train Loss: 0.6712 Acc: 0.6434
val Loss: 0.2472 Acc: 0.9150

Epoch 1/24
----------
train Loss: 0.5104 Acc: 0.7664
val Loss: 0.1941 Acc: 0.9346

...

Epoch 24/24
----------
train Loss: 0.2855 Acc: 0.8484
val Loss: 0.2148 Acc: 0.9477

Training complete in 21m 37s
Best val Acc: 0.9477

再基于上面重新训练的模型,进行模型效果可视化,将主函数换为如下代码:

# 模型评估效果可视化
    model_conv = torch.load('models/model_conv')  # 加载模型
    visualize_model(model_conv)
    plt.pause(0)

运行结果如下:

附:本文中学习率衰减用的SetpLR,关于学习率衰减可查看https://zhuanlan.zhihu.com/p/93624972

对于迁移学习PyTorch提供了许多方便的功能和工具。迁移学习是指将在一个任务上训练好的模型应用到另一个相关任务上的技术。 在PyTorch中进行迁移学习的一种常见方法是使用预训练的模型。预训练的模型是在大规模数据集上进行训练的,并且通常具有良好的特征提取能力。你可以使用这些预训练的模型作为基础模型,并根据你的特定任务进行微调。 以下是一个简单的示例,展示了如何使用PyTorch进行迁移学习: 1. 导入必要的库: ```python import torch import torch.nn as nn import torchvision.models as models ``` 2. 加载预训练的模型(例如,ResNet): ```python model = models.resnet18(pretrained=True) ``` 3. 将模型的最后一层替换为适合你的任务的新层: ```python num_classes = 10 # 替换为你自己的类别数量 model.fc = nn.Linear(model.fc.in_features, num_classes) ``` 4. 定义损失函数和优化器: ```python criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001, momentum=0.9) ``` 5. 进行微调训练: ```python # 在新任务的数据集上进行训练 for epoch in range(num_epochs): for images, labels in dataloader: optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() ``` 这只是一个简单的示例,你可以根据你的具体任务进行相应的修改和调整。希望能对你有所帮助!
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值