聚类算法概述1--相似性度量

一 聚类中的相似性度量:

以下方法适用于直接对raw data进行相似性的度量,或者对比提取features之后的dada的相似性。

1:距离

1)Lr norm距离:

如果是L1 norm,那就是绝对值/曼哈顿距离(Manhattan distance),d(i,j)=|xi-xj|+|yi-yj|。

如果是L2 norm,那就是著名的欧式距离(Euclidean distance)了,应用最广泛。

如果,supremum距离,计算两个向量相差最大的维度的距离。

2) 马氏距离:Mahalanobis距离:

http://www.a-site.cn/article/217247.html-----结合PCA的推导来看,特别是协方差矩阵即X*trans(X)

https://www.cnblogs.com/Weirping/articles/6613013.html

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

First Snowflakes

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值