论文阅读笔记《Self-attention relation network for few-shot learning》

小样本学习&元学习经典论文整理||持续更新

核心思想

  本文提出一种基于度量学习的小样本学习算法(SARN),其在Relation Network的基础上增加了自注意力机制,使网络能够提取到非局部的远距离的依赖信息。这是什么意思呢?就是普通的卷积神经网络只能提取到局部区域(感受野)内的依赖关系,而自注意力机制则是希望寻找到每个像素点与其他所有像素点之间的依赖关系,或者叫做相关性。这样做的原因是,支持集图像和查询集图像中统一特征的物体其空间位置可能并不相同,比如两幅狗的照片,一张图片中狗的尾巴在图像的右上角,另一幅图片中狗的尾巴在图像的左下角,如果只是简单的将两幅图像的特征图级联,并进行卷积的话,是无法寻找到右上角和左下角两个尾巴特征之间的关系的。自注意力机制就是为了解决这个问题,本文提出的网络结构如下图所示
在这里插入图片描述
  整个网络由特征提取模块、自注意力模块和相关性模块构成,特征提取网络和相关性模块不再详述。自注意力模块首先把支持集图像的特征图和查询集图像的特征图级联起来,得到特征图 p ∈ R C × H × W p\in\mathbb{R}^{C\times H\times W} pRC×H×W,对于位置 i i i处,自注意力模块的输出 o i o_i oi如下
在这里插入图片描述
其中 p i p_i pi就是输入特征图位置 i i i处对应的特征值, A A A B B B都是输入特征图 p p p经过1 * 1卷积得到的(两个卷积核不共享),并将特征图铺平, A , B ∈ R C × N A,B\in \mathbb{R}^{C\times N} ABRC×N N = H × W N=H \times W N=H×W h ( A i , B j ) h(A_i,B_j) h(Ai,Bj)就是用于计算位置 i i i和位置 j j j之间关系的过程,本文采用带有softmax的高斯函数
在这里插入图片描述
另一个函数 t ( p j ) t(p_j) t(pj)用于计算输入特征图 p p p在位置 j j j处的表征,同样是一个1 * 1的卷积,并将结果铺平。 N \mathcal{N} N表示归一化因子,计算过程如下
在这里插入图片描述
  上述过程重复执行两次,得到带有自注意力图的特征图 o o o,再经过两个全连接层输出查询集图像和支持集图像之间的相似性得分。

实现过程

网络结构

  特征提取网络采用4-Conv结构,相关性模块采用两个全连接层,一个输出维度为8,另一个输出维度为1.

损失函数

  本文把该任务看作一个回归任务,采用了MSE损失函数
在这里插入图片描述
r i , j r_{i,j} ri,j表示 r , j r,j r,j两幅图的相似性得分。

算法推广

  本文算法可以用于零样本学习任务,只需要把特征提取网络改造为能够提取语义信息的模块即可。

创新点

  • 引入了自注意力机制,寻找远距离的像素之间的依赖关系
  • 把任务归结为相似性得分的回归任务

算法评价

  本文是在Relation Network的基础上进行改进的文章,其引入的自注意力机制是再目标识别,目标检测的任务中应用非常广泛的一种方法。直觉上来看,寻找不同像素点之间的对应关系,尤其是相距较远的像素点之间的对应关系是很有必要的。但实验结果看来,该方法的改进作用并不明显。

如果大家对于深度学习与计算机视觉领域感兴趣,希望获得更多的知识分享与最新的论文解读,欢迎关注我的个人公众号“深视”。在这里插入图片描述

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 12
    评论
### 回答1: "Learning to Compare: Relation Network for Few-Shot Learning" 是一篇关于Few-Shot Learning小样本学习)的论文,提出了一种称为“关系网络”的新型神经网络架构。 该网络旨在解决小样本学习中的问题,该问题通常会导致在只有极少量的训练样本的情况下,模型的泛化性能下降。关系网络使用一个子网络来提取图像特征,并通过计算这些特征之间的关系来对它们进行分类。 关系网络的特点是它在执行分类任务时能够捕捉物体之间的关系和上下文信息,因此在少量样本的情况下,它的性能比其他方法更好。该网络已经被广泛应用于小样本学习领域,并在多项实验中获得了优秀的表现。 ### 回答2: 本文主要介绍了一种基于关系网络的few-shot学习方法——Relation Network(RN)。Few-shot学习是一种类别识别的任务,旨在从非常少量(通常是几个)的样本中学习新的类别。RN为此提供了一种强大的框架,可以在few-shot学习中能够有效地捕捉物体之间的关系,从而实现精确的类别识别。 RN在模型设计中引入了两个重要的组件:特征提取器和关系网络。特征提取器通常是卷积神经网络(CNN),它可以提取出每个样本的特征表示。关系网络的作用是计算出每对样本之间的关系,将这些关系汇总到一起,最终出现样本之间的相对关系。在计算样本之间的关系时,RN采用的是一种全连接神经网络,它对每一对样本的特征进行融合,然后输出一个特定类别的置信度。 值得注意的是,RN的关系网络不仅可以使用在few-shot学习中,也可以应用于全局分类问题。此外,RN采用了一些有效的技巧来加速测试阶段的推理速度,比如使用浅层矩阵乘法以减少计算量,和简单的欧氏距离作为度量衡量。 总而言之,RN是一种强大的学习方法,特别是在few-shot学习方面,可以实现更好的判别性能和更准确的类别识别。不过,同时也存在一些限制,比如需要更多的数据集来训练样本的特征提取器,以及容易出现过拟合问题。因此,RN还需要进行更深入的研究和优化,以实现更大范围的应用和实际效果。 ### 回答3: 学习比较:关系网络是一种少样本学习的方法,旨在解决少样本学习问题中的挑战。传统的机器学习方法需要大量数据来训练模型。而在现在许多领域,例如医疗诊断和工业生产,只有很少的数据可用于训练模型。在这种情况下,少样本学习就变得非常重要。学习比较:关系网络是少样本学习的一种新方法,它通过学习对象之间的关系来捕捉它们之间的相似性和差异性。 学习比较:关系网络包含两个部分:特征提取器和关系网络。特征提取器将输入图像转换为对应的向量表示,而关系网络则对这些向量进行比较,从而推断它们之间的关系。关系网络可以用来处理各种不同的问题,例如分类、回归和生成等。 学习比较:关系网络的优点是,它可以利用少量的数据来学习,并且可以在不同的任务之间共享知识。这使它成为处理少样本学习问题时的一个有力工具。在实际应用中,学习比较:关系网络已经被广泛应用于图像分类、目标检测和语音识别等领域,并产生了许多显著的结果。未来,随着越来越多的研究者开始使用这种方法,我们可以期待看到更多的成功案例,并进一步将学习比较:关系网络应用到更广泛的领域,以帮助人们解决难题并改善生活质量。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深视

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值