目录
基于小样本目标检测方法的研究
按照小样本目标检测方法的思想和模型结构可大致分为:基于度量学习的方法、
基于数据增强的方法和基于元学习的方法。
(1)基于数据增强的方法
基于数据增强的方法是研究人员用来提高模型性能最常用的一种手段,不管是
在训练样本充足还是训练样本比较缺乏的情况下,该方法都能在一定程度上提高模
型的鲁棒性。Schwartz等人设计了Delta-encoder编码器,在同一类训练示例对之间
提取可转移的类内变形或增量,以合成足够多的来自该新类的样本,从而用于训练分
类器[6]。Douze等人采用大量图像集合的半监督学习方法,对没有标记的样本进行标
签传播,将标签传播扩展到数亿张图像[7]。Hariharan等人利用生成器将同一