目标检测YOLO实战应用案例100讲-基于小样本的目标检测与跟踪模型研究

目录

基于小样本目标检测方法的研究 

(1)基于数据增强的方法 

(2)基于度量学习的方法

(3)基于元学习的方法 

小样本目标识别相关技术 

2.1 小样本学习介绍 

2.2 目标识别的基本方法 

基于Swin Transformer的小样本目标检测 

3.1 研究动机 

3.2 SwinT-FSOD模型的设计 

3.3 实验结果与分析

基于语义对齐的小样本目标检测 

4.1 研究动机 

4.2 SA-FSOD模型的设计 

4.3 实验结果与分析 

基于小样本的目标检测与跟踪模型研究

相关理论基础知识

2.1深度学习简介

2.2小样本目标检测

2.3基础知识

使用数据扩充方法的单阶段小样本目标检测

3.1单阶段网络模型

3.2制作数据集

3.3图像增强

3.4实验与结果分析

基于基类检测新类的两阶段小样本目标检测

4.1两阶段网络模型

4.2特征金字塔

4.3关系感知的全局注意力

4.4实验与结果分析

目标跟踪方法研究

5.1帧间差分法

5.2背景减除法

5.3光流法

5.4单目标跟踪器应用


基于小样本目标检测方法的研究 
 

按照小样本目标检测方法的思想和模型结构可大致分为:基于度量学习的方法、
基于数据增强的方法和基于元学习的方法。 

(1)基于数据增强的方法 


基于数据增强的方法是研究人员用来提高模型性能最常用的一种手段,不管是
在训练样本充足还是训练样本比较缺乏的情况下,该方法都能在一定程度上提高模
型的鲁棒性。Schwartz等人设计了Delta-encoder编码器,在同一类训练示例对之间
提取可转移的类内变形或增量,以合成足够多的来自该新类的样本,从而用于训练分
类器[6]。Douze等人采用大量图像集合的半监督学习方法,对没有标记的样本进行标
签传播,将标签传播扩展到数亿张图像[7]。Hariharan等人利用生成器将同一

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值