目标检测YOLO实战应用案例100讲-基于无人机图像的房屋目标检测

目录

前言

国内外研究现状  

房屋建筑检测的研究现状 

深度学习的研究现状 

存在的问题及困难

相关技术原理 

 2.1深度学习 

2.2 神经网络的结构  

2.2.1 神经元 

2.2.2 多层感知器 

2.2.3 激活函数 

2.2.4 优化算法 

2.2.5 反向传播 

2.3 卷积神经网络 

2.4 基于深度学习的目标检测算法 

2.4.1 两步检测网络模型 

2.4.2 一步检测网络模型 


本文篇幅较长,分为上下两篇,下篇详见基于无人机图像的房屋目标检测(续)

 

前言

城市是各国家各地区的经济、政治和文化中心,随着我国经济发展水平的提高, 城镇中心面积不断扩张,房屋建筑的数量不断增多,城镇迅猛的扩张为中国的经济 带来了巨大的发展,但是在此过程中也出现了一系列的问题。例如城镇发展具有规 模性,政府进行统一规划,便于管理,而城市周围乡村由于与市中心距离较远,管 理不便,存在部分村民在公共土地上私自搭建房屋建筑的现象,其搭建的房屋可能 存在不符合相关规定或章程的问题,此类建筑即定义为违章建筑[ 1],

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值