目标检测YOLO实战应用案例100讲-【目标检测】缺陷检测(二)

目录

前言

算法原理

机器视觉表面缺陷检测

表面缺陷检测

表面缺陷检测应用

机器视觉表面缺陷检测方法

表面缺陷检测

机器视觉表面缺陷检测系统基本组成

表面缺陷检测应用

机器视觉工业缺陷检测(光源,相机,镜头,算法)

一、硬件选型

二、算法(预处理算法、检测算法)

三、现有可用的视觉检测软件/库

外观瑕疵检测

瑕疵模式的原理

分割

瑕疵模式算法(各分割与周围分割进行比较和计算的方法)

检测原理 (检测方向为X)

指定检测方向为XY(二维)时的处理方法

瑕疵模式的原理 总结

瑕疵模式的优化设置方法

最佳分割尺寸

适于图像的分割移动量/ 比较间隔的设置

瑕疵模式最佳设定方法 总结

圆周方向瑕疵检查的原理

外观检测/瑕疵模式 总结

表面缺陷检测技术的主要问题与发展趋势

01机器视觉系统中的缺陷检测技术

02主要的问题与难点

03机器视觉缺陷检测技术四要素

基于机器视觉的⌈表面划伤⌋


 

前言

在工业生产中总是经常遇到裂痕、划痕等产品的表面缺陷问题,机器视觉行业对于表面检测相比前几年已经有很大的突破,对于产品表面的划伤、污迹等检测已经不再是难点。

在金属、玻璃、手机屏幕、液晶板等行业表面检测上应用广泛。

但由于该类缺陷形状不规则、深浅对比度低,而且往往会被产品表面的自然纹理或图案所干扰。因此,表面划痕缺陷检测对于正确打光、相机分辨率、被检测部件与工业相机的相对位置、复杂的机器视觉算法等要求非常高。

算法原理

机器视觉表面缺陷检测

工业产品的表面缺陷对产品的美观度、舒适度和使用性能等带来不良影响,所以生产企业对产品的表面缺陷进行检测以便及时发现并加以控制。

机器视觉的检测方法可以很大程度上克服人工检测方法的抽检率低、准确性不高、实时性差、效率低、劳动强度大等弊端,在现代工业中得到越来越广泛的研究和应用。

方法以机器视觉表面缺陷检测为研究对象,在广泛调研相关文献和发展成果的基础上,对基于机器视觉在表面缺陷检测领域的应用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值