工作过程中,使用工作流过程中,由于嵌入知识库。需要对知识库进行配置,下文将对工作过程中的知识库配置进行介绍、并对相关经验进行总结。
目录
一、知识库参数
知识库包含很多配置参数
1. Rerank模型(重排序)
在知识库检索中,Rerank是一个非常重要的环节,尤其在检索增强生成(RAG)架构中。它可以帮助大语言模型(LLM)获取更精确的内容,从而提高生成回答的准确性和相关性。
Rerank的原理和机制:
1. 初步检索
- 在知识库检索的过程中,首先通过向量检索或其他检索方法,从知识库中检索出于用户问题相关的多个文档或文本片段。
- 这些文档可能与用户问题的相关性不同,有些可能非常贴切,而有些知只是稍微相关,甚至不相关。
2. 重新排序、过滤和优化
- Rerank模型 接收初步检索到的文档和列表和用户的问题作为输入。评估每个结果与用户问题的相关性,计算相关性分数。根据分数对文档进行重新排序,将最相关订单文档排在前面。
- 并且,过滤掉不相关的文档,从而减少噪声。
- 这样,当LLM生成回答时,会优先考虑排名靠前的、更加相关订单文档。最后,重新排序的文档作为上下文输入到LLM中,LLM根据这些更精确的上下文生成回答。
总之,Rerank可以帮助LLM获取更精确的内容的原因是:
- 提高相关性
- 减少噪声
- 优化上下文
2. Top K
Top K用于控制检索系统返回结果的数量。例如,如果配置为2&