RAG:知识库参数设置

工作过程中,使用工作流过程中,由于嵌入知识库。需要对知识库进行配置,下文将对工作过程中的知识库配置进行介绍、并对相关经验进行总结。

目录

一、知识库参数

1. Rerank模型(重排序)

2. Top K

3. Score阈值

4. 全文检索、向量检索和混合检索

5. Q & A分段模式


一、知识库参数

知识库包含很多配置参数

1. Rerank模型(重排序)

在知识库检索中,Rerank是一个非常重要的环节,尤其在检索增强生成(RAG)架构中。它可以帮助大语言模型(LLM)获取更精确的内容,从而提高生成回答的准确性和相关性。

Rerank的原理和机制:

1. 初步检索

  • 在知识库检索的过程中,首先通过向量检索或其他检索方法,从知识库中检索出于用户问题相关的多个文档或文本片段。
  • 这些文档可能与用户问题的相关性不同,有些可能非常贴切,而有些知只是稍微相关,甚至不相关。

2. 重新排序、过滤和优化

  • Rerank模型 接收初步检索到的文档和列表和用户的问题作为输入。评估每个结果与用户问题的相关性,计算相关性分数。根据分数对文档进行重新排序,将最相关订单文档排在前面。
  • 并且,过滤掉不相关的文档,从而减少噪声。
  • 这样,当LLM生成回答时,会优先考虑排名靠前的、更加相关订单文档。最后,重新排序的文档作为上下文输入到LLM中,LLM根据这些更精确的上下文生成回答。

总之,Rerank可以帮助LLM获取更精确的内容的原因是:

  • 提高相关性
  • 减少噪声
  • 优化上下文

2. Top K

Top K用于控制检索系统返回结果的数量。例如,如果配置为2&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值