【预训练语言模型】KG-BERT: BERT for Knowledge Graph Completion

【预训练语言模型】KG-BERT: BERT for Knowledge Graph Completion

核心要点:

  • 知识图谱是不全的,先前的补全方法只是考虑稀疏的结构信息,忽略了上下文的文本信息;
  • 将实体、关系和三元组是为序列,并将知识图谱补全的任务视作序列分类任务;

简要信息:

序号属性
1模型名称MT-DNN
2发表位置ACL 2019
3所属领域自然语言处理、预训练语言模型
4研究内容预训练语言模型、知识增强语言模型
5核心内容Knowledge-enhanced PLM
6GitHub源码https://github.com/sunyilgdx/NSP-BERT
7论文PDFhttps://arxiv.org/pdf/1901.11504.pdf

一、动机

  • 知识图谱对人工智能领域的贡献很大,但是知识图谱的普遍问题是图谱不全(incompleteness);
  • 本文提出使用BERT来结合知识图谱实现图谱补全;

二、方法:KG-BERT

  BackBone选择BERT,提出KG-BERT模型在预训练好的BERT基础上继续fine-tuning。

Triple Classification
  将三元组转换为文本序列模式,转换方法如下图所示:

在这里插入图片描述
  将实体、关系的名称或描述文本,通过[CLS]和[SEP]进行顺序拼接,喂入KG-BERT中后,获得[CLS]的表征向量,并进行二分类,判断该三元组是否成立。
数据划分是,分为正样本(三元组即在KG中)和负样本(给定一个三元组,随机替换实体或关系,且确保生成的新的三元组在KG中不存在),负样本形式化描述为:

  最终使用交叉信息熵损失函数:

Relation Classification
在这里插入图片描述
  KG-BERT也可以完成关系分类,输入两个实体或实体描述,输出多类分类。采用负对数损失函数:

三、实验

数据集(KG):

Baseline:
均为知识表示学习相关方法:

评估任务:

  • triple classification:

  • link prediction:

  • relation prediction:

<think>好的,我现在需要处理用户关于兴趣图谱算法与Transformer模型结合的问题。首先,我需要理解用户的需求。用户想知道这两者如何结合,包括实现方法、相关论文和代码示例。我得先回顾兴趣图谱和Transformer的基本概念,然后找出它们的结合点。 兴趣图谱通常关注用户兴趣的表示和关系,可能涉及图结构数据。而Transformer模型,特别是自注意力机制,擅长处理序列数据并捕捉长距离依赖。结合的话,可能是在图谱构建或表示学习中使用Transformer,比如用Transformer来编码节点特征或处理图中的序列信息。 接下来,我需要查阅相关文献。记得引用中提到了BERT基于Transformer,可以生成上下文相关的词向量,这可能对节点嵌入有帮助。另外,知识图谱构建中使用Transformer的代码示例虽然不完整,但可以参考。可能需要考虑如何将图结构转换为Transformer可处理的输入,比如将节点和边表示为序列,或者使用图注意力机制。 在实现方法上,可能的步骤包括:数据预处理(将图结构转换为序列或矩阵)、设计适合图结构的Transformer模型(比如加入位置编码或图结构编码)、训练模型进行节点分类或链接预测。代码示例方面,可能需要使用PyTorch或TensorFlow,定义Transformer层,处理图数据。例如,使用DGL或PyG库来处理图数据,然后集成Transformer模块。 论文方面,可能涉及Graph Transformer、BERT用于知识图谱的论文,或者应用Transformer在推荐系统中的兴趣图谱案例。需要推荐一些具体的论文,比如《Graph Transformer Networks》或《BERT for Knowledge Graph Completion》。 还要注意用户提到的引用,特别是引用[3]提到代码示例不完整,需根据任务调整。因此,在给出代码示例时,要注明这是简化版,实际需要更多细节。需要确保LaTeX格式正确,行内公式用$...$,独立公式用$$...$$,并检查语法正确性。 最后,生成相关问题,可能涉及优化方法、应用场景、性能比较等。要确保问题与主题相关,帮助用户深入理解。</think>### 兴趣图谱算法与Transformer模型的结合方法 兴趣图谱(Interest Graph)通过建模用户兴趣及其关联关系,广泛应用于推荐系统和社交网络分析。结合Transformer模型的核心思路是利用其强大的序列建模和自注意力机制,增强兴趣图谱中节点(兴趣点)的表示能力和关系推理能力。 #### 1. **实现方法** - **兴趣图谱的图结构编码** 将兴趣图谱中的节点(用户兴趣)和边(兴趣关联)转换为Transformer可处理的序列形式。例如: - **节点序列化**:通过随机游走生成节点序列,输入Transformer进行表示学习[^4]。 - **图注意力机制**:在Transformer的自注意力层中引入图结构信息,如通过邻接矩阵约束注意力权重[^1]。 - **基于Transformer的节点嵌入** 使用Transformer编码器对兴趣图谱的节点特征进行编码,生成上下文相关的嵌入表示。公式如下: $$H = \text{TransformerEncoder}(X + P)$$ 其中$X$为节点特征矩阵,$P$为位置编码(或图结构编码)。 #### 2. **相关论文** - **理论结合** -Graph Transformer Networks》提出将图结构与Transformer结合,通过改进注意力机制实现图节点的高效表示。 - [^4]《BERT for Knowledge Graph Completion》探讨了BERT模型在知识图谱补全中的应用,可迁移至兴趣图谱的关系推理任务。 - **应用场景** - 推荐系统:利用Transformer建模用户兴趣的动态演化,如《Transformer-based Sequential Recommendation with Dynamic Interest Matching》。 #### 3. **代码示例(简化版)** 以下为使用PyTorch实现的兴趣图谱节点嵌入生成示例: ```python import torch import torch.nn as nn from transformers import TransformerEncoder, TransformerEncoderLayer class InterestGraphTransformer(nn.Module): def __init__(self, num_nodes, d_model=512, nhead=8): super().__init__() self.node_embedding = nn.Embedding(num_nodes, d_model) encoder_layer = TransformerEncoderLayer(d_model, nhead) self.transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6) def forward(self, node_ids): x = self.node_embedding(node_ids) # 节点嵌入 x = self.transformer_encoder(x) # Transformer编码 return x # 示例:生成10个节点的嵌入 model = InterestGraphTransformer(num_nodes=10) node_ids = torch.arange(10) embeddings = model(node_ids) ``` > 注:实际需根据图结构设计位置编码或添加图注意力模块[^3]。 #### 4. **关键挑战** - **图与序列的异构性**:需设计适配图结构的Transformer变体(如Graph Transformer)。 - **动态兴趣建模**:通过时间注意力机制捕捉兴趣变化[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

华师数据学院·王嘉宁

$感谢支持$

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值