英语单词:Clamp

*[klæmp]
n. 夹钳
vt. 夹紧, 强加
【化】 卡子
【医】 夹, 夹具
/klæmp; klæmp/ n 1 (also cramp) device for holding things tightly together, usu by means of a screw 夹具; 夹铗. 2 piece of wood, metal, etc used for strengthening other materials or fastening things together 夹板; 压板.

v 1 [Tn] grip or hold (sth) (as if) with a clamp (像)用夹具夹住(某物): He kept his pipe clamped between his teeth. 他一直叼着烟斗. 2 [Tn, Tn.pr] ~ A and B (together); ~ A to B fasten (one thing to another) with a clamp 用夹具将(一物与另一物)夹紧, 固定住: clamp two boards together 把两块板夹在一起. 3 (phr v) clamp down on sb/sth (infml 口) become stricter about sth; use one’s authority against sb or to prevent or suppress sth 对某事更严格; 利用权势反对某人或防止或压制某事: The Government intends to clamp down on soccer hooliganism. 政府拟采取措施严禁在足球比赛中闹事.

下面是从内核里的代码里摘抄的一段:clamp这里是讲一个全局变量的值,控制在0到100内。

static void __init kfree_rcu_batch_init(void)  /// 函数名是一个非常有用的唯一标识符。如果只贴代码片段,可能你得全局搜索找半天,如果是是给出函数名称,会加快找到出处的时间。
{
	int cpu;
	int i;

	/* Clamp it to [0:100] seconds interval. */   ///这里是讲一个全局变量的值,控制在0到100内。
	if (rcu_delay_page_cache_fill_msec < 0 ||
		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {

		rcu_delay_page_cache_fill_msec =
			clamp(rcu_delay_page_cache_fill_msec, 0,
				(int) (100 * MSEC_PER_SEC));

		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
			rcu_delay_page_cache_fill_msec);
	}

比如在mtu的处理里还专门有clamp函数,来限制mtu的范围。
mtu = clamp(dev->mtu, (unsigned int)ETH_MIN_MTU, (unsigned int)(max - sizeof(struct iphdr)));

/**
 * clamp - return a value clamped to a given range with strict typechecking
 * @val: current value
 * @lo: lowest allowable value
 * @hi: highest allowable value
 *
 * This macro does strict typechecking of @lo/@hi to make sure they are of the
 * same type as @val.  See the unnecessary pointer comparisons.
 */
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
内容概要:本文档《opencv高频面试题.docx》涵盖了OpenCV的基础概念、图像处理操作、特征提取与匹配、目标检测与机器学习、实际编程题、性能优化以及进阶问题。首先介绍了OpenCV作为开源计算机视觉库,支持图像/视频处理、目标检测、机器学习等领域,应用于安防、自动驾驶、医学影像、AR/VR等方面。接着详细讲述了图像的存储格式(如Mat类)、通道的概念及其转换方法。在图像处理部分,讲解了图像灰度化、二值化、边缘检测等技术。特征提取方面,对比了Harris和Shi-Tomasi角点检测算法,以及SIFT、SURF、ORB的特征提取原理和优缺点。目标检测部分介绍了Haar级联检测原理,并阐述了如何调用深度学习模型进行目标检测。文档还提供了几个实际编程题示例,如读取并显示图像、图像旋转、绘制矩形框并保存等。最后,探讨了性能优化的方法,如使用cv2.UMat(GPU加速)、减少循环等,以及相机标定、光流等进阶问题。 适合人群:对计算机视觉有一定兴趣,具备一定编程基础的学习者或从业者。 使用场景及目标:①帮助学习者掌握OpenCV的基本概念和技术;②为面试准备提供参考;③为实际项目开发提供技术指导。 阅读建议:由于内容涵盖广泛,建议读者根据自身需求有选择地深入学习相关章节,并结合实际编程练习加深理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mzhan017

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值