Pytorch scatter_理解

scatter_(dim, index, src)将src中数据根据index中的索引按照dim的方向填充进调用scatter_的向量中;

1.dim=0

首先了解,dim=0,表示按行填充列数不变;scatter_参数中给定的index tensor,idx两个中括号对应x,比如x的size是2x5,那么indx矩阵也应该是2x5,然后因为dim=0,按行填充,行变列不变,所以比如矩阵中0,1,2索引都表示把x的值,填充到新矩阵的0,1,2行;

具体解释:比如第一个中括号第一个值0,表示取x中第0行第0列(0.3992),填充到(3,5)中的第0行第0列;第二个中括号(第二行)第一个值2,表示取x中第1行第0个值(0.5735),填充到(3,5)中的第2行第0列;

2.dim=1

dim=1,表示按列填充行数不变;同理上面例子,因为dim=1,按列填充,列变行不变,所以比如矩阵中0,1,2索引都表示把x的值,填充到新矩阵的0,1,2列,新来的值覆写旧的值;

 

 

;链接:https://pytorch.org/docs/stable/tensors.html?highlight=scatter_#torch.Tensor.scatter_

`torch_scatter.scatter_max`函数是PyTorch中的一种scatter函数,用于将输入的Tensor按照指定的维度进行散射操作,并返回指定维度上的元素最大值和对应的索引位置。 该函数的输入包括三个参数:输入Tensor(即要进行散射操作的Tensor)、散射维度dim和索引Tensor(即指定维度上的索引位置)。输出包括两个Tensor:散射后的Tensor和对应的最大值和索引位置。 具体来说,`torch_scatter.scatter_max`函数的操作流程如下: 1. 根据索引Tensor将输入Tensor按照指定维度进行散射操作,得到一个散射后的Tensor。 2. 在指定维度上找到散射后的Tensor中的最大值和对应的索引位置。 3. 返回散射后的Tensor和最大值和索引位置对应的两个Tensor。 值得注意的是,如果输入Tensor中某些元素在指定维度上对应的索引位置相同,那么在散射操作时,这些元素的最大值和索引位置会被更新为最后一个被处理到的元素的最大值和索引位置。 下面是一个简单的示例代码,演示了如何使用`torch_scatter.scatter_max`函数: ```python import torch from torch_scatter import scatter_max # 定义一个输入Tensor x = torch.tensor([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]) # 定义一个索引Tensor index = torch.tensor([0, 1, 0]) # 在第一维上进行散射操作,得到散射后的Tensor和最大值和索引位置对应的两个Tensor out, argmax = scatter_max(x, index, dim=0) # 输出结果 print(out) # tensor([[0.7000, 0.8000, 0.9000], [0.4000, 0.5000, 0.6000]]) print(argmax) # tensor([2, 1]) ``` 在上面的示例代码中,我们首先定义了一个3x3的输入Tensor `x`,然后定义了一个长度为3的索引Tensor `index`,表示在第一维上,第一个元素要被散射到第0个位置,第二个元素要被散射到第1个位置,第三个元素要被散射到第0个位置。 之后我们调用`torch_scatter.scatter_max`函数,在第一维上进行散射操作,得到了散射后的Tensor `out`和最大值和索引位置对应的两个Tensor `argmax`。最后我们输出了这两个Tensor的值,可以看到在第一维上,第一个位置对应的最大值为0.7,索引为2,第二个位置对应的最大值为0.5,索引为1。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值