凸优化简介7

本文介绍了共轭梯度法在凸优化问题中的应用,特别是针对大规模稀疏线性方程组的求解。通过在子空间K内寻找解,减少计算量。共轭梯度方法产生的点序列{xk}满足正交性质,有限步长内找到最优解。文中还讨论了不同计算βk的方法,如Fletcher-Reeves和Polak-Ribière公式,并提及了重启策略以确保全局收敛性。
摘要由CSDN通过智能技术生成

文章目录

共轭梯度

在前面利用梯度的算法中,迭代步骤中 x k x_k xk都是由初始点 x 0 x_0 x0以及梯度 ∇ f ( x i ) \nabla f(x_i) f(xi)得到的。并且在凸优化简介6最后也提到了变度量方法的计算量较大。
前面的方法是从完整的 R n \mathbb{R}^n Rn空间中选取初始点开始迭代,那么是否可以在一个子空间内寻找解。
在求解大规模稀疏线性方程组 A x = b , A ∈ R n × n , b ∈ R n Ax=b, A\in \mathbb{R}^{n\times n}, b\in \mathbb{R}^n Ax=b,ARn×n,bRn,经常使用 Krylov subspace,记作 K \mathfrak{K} K,基本思想是在 K ∈ R n \mathfrak{K}\in \mathbb{R}^n KRn中寻找近似解。这类方法也被看做是一种投影方法。
问题描述:
K \mathfrak{K} K R n \mathbb{R}^n Rn的一个子空间,记 m : = d i m ( K ) ≪ n m:=dim(\mathfrak{K}) \ll n m:=dim(K)n
目标:在 K \mathfrak{K} K中找到一个最好的逼近;
定解条件:设置 m m m个约束,要求参量满足 m m m个正交条件, 即 r = b − A x ~ ⊥ F r=b-A\widetilde{x} \perp \mathfrak{F} r=bAx F。其中 x ~ \widetilde{x} x 是近似解, F \mathfrak{F} F是一个约束空间。当 F = K \mathfrak{F}=\mathfrak{K} F=K的时候,称为正交投影,否则称为斜投影。
常见的Krylov subspace方法包括 GMRES(Generalized minimal residual method)、CG等。
共轭梯度最初是用来最小化二次函数。例如 min ⁡ x ∈ R n f ( x ) \min \limits_{x\in \mathbb{R}^n}f(x) xRnminf(x),其中 f ( x ) = a + ⟨ a , x ⟩ + 1 2 ⟨ A x , x ⟩ f(x)=a+\langle a,x \rangle+\frac{1}{2}\langle Ax, x \rangle f(x)=a+a,x+21Ax,x,且 A = A T ≻ 0 A=A^T \succ 0 A=AT0。设 x ∗ x^* x为函数 f ( x ) f(x) f(x)的最优值,则根据 ∇ f ( x ∗ ) = 0 \nabla f(x^*)=0 f(x)=0 得到 x ∗ = − A − 1 a x^*=-A^{-1}a x=A1a,因此目标函数可以转换为:

f ( x ) = a + ⟨ a , x ⟩ + 1 2 ⟨ A x , x ⟩ = a − ⟨ A x ∗ , x ⟩ + 1 2 ⟨ A x , x ⟩ = a − 1 2 ⟨ A x ∗ , x ∗ ⟩ + 1 2 ⟨ A ( x − x ∗ ) , x − x ∗ ⟩ . \begin{aligned} &f(x)=a+\langle a,x \rangle+\frac{1}{2}\langle Ax,x\rangle\\ &=a-\langle Ax^*,x \rangle+\frac{1}{2}\langle Ax, x \rangle\\ &=a-\frac{1}{2}\langle Ax^*,x^*\rangle+\frac{1}{2}\langle A(x-x^*), x-x^*\rangle. \end{aligned} f(x)=a+a,x+21Ax,x=aAx,x+21Ax,x=a21Ax,x+21A(xx),xx.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值