【图像拼接/扩散模型】论文精读:RecDiffusion: Rectangling for Image Stitching with Diffusion Models(重磅!CVPR 2024)

RecDiffusion是CVPR 2024提出的一种新方法,它使用扩散模型来解决图像拼接后的非矩形边界问题。传统方法如裁剪或修复可能会丢失或引入不相关的内容,而RecDiffusion结合运动扩散模型(MDM)和内容扩散模型(CDM),通过学习的去噪过程生成几何准确且视觉上令人愉悦的矩形图像。MDM生成运动场,CDM细化图像细节,通过加权图采样策略减少噪声和伪影。实验表明RecDiffusion在定量和定性评估中超越了现有方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值