文章目录 欧式距离 闵可夫斯基距离 马氏距离 卡方chi-square fisher score 余弦相似度 互信息 pearson相关系数 Jaccard相关系数 KL散度 JS距离 DTW距离 相似度和距离度量在机器学习中非常重要。因此这里做一点总结。 欧式距离 最简单的,从小都会,是高维空间中两个点的直线距离(以二维空间为例就很好理解)。 闵可夫斯基距离 曼哈顿距离就是模的和,比如在二维空间,就是两点的差的绝对值之和。 马氏距离 这里开始复杂一点了,扯到了概率分布,即开始不再只是简单考虑这两个向量本身,而是把他们都看作是来自某一个概率分布中的随机样本,即开始探究他们背后