总结:两个向量之间,常用的距离/相似性度量


相似度和距离度量在机器学习中非常重要。因此这里做一点总结。

欧式距离

在这里插入图片描述
最简单的,从小都会,是高维空间中两个点的直线距离(以二维空间为例就很好理解)。
在这里插入图片描述

闵可夫斯基距离

在这里插入图片描述
曼哈顿距离就是模的和,比如在二维空间,就是两点的差的绝对值之和。
在这里插入图片描述

马氏距离

在这里插入图片描述
这里开始复杂一点了,扯到了概率分布,即开始不再只是简单考虑这两个向量本身,而是把他们都看作是来自某一个概率分布中的随机样本,即开始探究他们背后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值