前言
本专栏手把手教你 YOLOv9 实战, YOLOv9 算法框架设计策略具备诸多优势,其核心创新主要在于引入了 PGI(Programmable Gradient Information,可编程梯度信息)和 GELAN,允许模型在训练过程中更有效地学习和提取关键特征以及提高轻量级模型的性能。PGI 是一种辅助监督框架,通过辅助可逆分支生成可靠的梯度信息来更新网络参数,从而提高训练效率和模型性能。GELAN 则是一种新的轻量级网络架构,它基于梯度路径规划,通过优化计算块和网络深度来提高模型的参数利用率和推理速度。YOLOv9 的技术特点还包括信息瓶颈缓解,通过 PGI 和 GELAN 的结合,减少在数据传输过程中的信息损失,使得模型能够更准确地习得目标任务的特征。此外,YOLOv9 采用一种新的训练策略,通过调整损失函数和优化器参数,使模型更快收敛,并在训练过程中保持稳定性。YOLOv9 的性能在MS COCO数据集上的表现超越了之前 YOLO 系列版本以及其他一些实时目标检测器。它在准确性、参数效率、计算复杂度和推理速度方面都有了显著提升,是一个在多方面都具有竞争力的目标检测模型,特别适用于需要实时处理的应用场景。
专栏介绍
-
为了提供友好的操作效果,本专栏将会手把手搭建可视化界面,我将用 PyQt5 搭建一个可视化界面,可视化界面能够实现基本的图像加载与检测功能,如支持视频、摄像头,还支持更换不同的 YOLOv9 模型,并适应不同领域(如口罩检测系统、人脸检测系统、工业缺陷检测系统等),界面灵活、功能强大。界面如下:
-
通过 YOLOv9 加以改进设计,形成新的算法框架,一起水科研和论文,专栏会一直持续更新中,本专栏适合目标检测、分割、分类。
-
通过本专栏,你将深入理解 YOLOv9 的核心原理与实际应用,从0 开始学习并掌握如何使用 YOLOv9 完成各类目标检测任务,帮助你快速上手并掌握 YOLOv9 在实际场景中的应用,专栏中还会涉及到如何处理数据集、如何调参,以及如何优化改进模型,无论你是新手还是有一定经验的开发者,都能快速上手。本专栏链接: YOLOv9改进专栏
为了加快大家科研实验效率,订阅本专栏可以获取完整代码一份,我已经把所有模块注册好了,大家只需修改训练文件的’–cfg’参数的defaut处填改进的yaml配置文件路径,大家也可以随机组合改进模块,如特征提取之主干网络+注意机制(可以将注意力机制嵌入到特征提取网络中,比如在 MobileNetV3 的添加注意机制模块,增强特征权重的选择性)、特征提取之主干网络+特征融合之 Neck 结构、特征提取之主干网络+损失函数+损失函数等。
🎓一、基础入门篇与论文写作篇
-
yolov9训练出现WARNING TensorBoard graph visualization failure Only tensors,可视化没有结构图解决方法(亲测有效)
-
YOLOv9分割训练自己数据和推理训练好模型,并教你使用Labelme工具标注数据(附YOLOv9分割模型结构图),全网最详细教程
-
手把手教你完成YOLOv9 PyQt5目标检测界面搭建,实现图片检测、视频检测、摄像头检测,可用于大论文凑工作量或毕设必备,全网最详细教程
🎓二、注意力机制篇
-
YOLOv9改进,YOLOv9引入FLAttention注意力机制(ICCV2023),并二次创新RepNCSPELAN4结构
-
YOLOv9改进,YOLOv9引入HAttention注意机制用于图像修复的混合注意力转换器,CVPR2023,超分辨率重建
-
YOLOv9改进,YOLOv9引入引入即插即用的空间和通道协同注意力模块SCSA,2024,二次创新RepNCSPELAN4结构
-
YOLOv9改进,YOLOv9引入BiLevelRoutingAttention双层路由注意机制并添加小目标检测层,助力小目标检测
-
YOLOv9改进,YOLOv9引入CAS-ViT(卷积加自注意力视觉变压器)中AdditiveBlock模块,二次创新RepNCSPELAN4结构
🎓三、卷积篇
-
YOLOv9改进,YOLOv9引入添加GSConv卷积+Slim-neck,助力小目标检测,二次创新RepNCSPELAN4结构
-
YOLOv9改进,YOLOv9引入TransNeXt中的ConvolutionalGLU模块,CVPR2024,二次创新RepNCSPELAN4结构
🎓四、主干篇
🍀🍀1.YOLOv9目标检测
🍀🍀2.YOLOv9实例分割
🎓五、损失函数篇
- YOLOv9改进系列,YOLOv9损失函数更换为Powerful-IoU(2024年最新IOU),助力高效涨点
- YOLOv9改进 ,YOLOv9改进损失函数采用SlideLoss来处理样本不平衡问题
- YOLOv9改进 ,YOLOv9改进损失函数采用Inner-IoU,一文构建Inner-SIoU,Inner-GIoU,Inner-DIoU,Inner-CIoU,Inner-MDPIoU全文最详细教
🎓六、特征融合篇
🎓七、检测头篇
- YOLOv9改进,YOLOv9自研检测头融合HAttention用于图像修复的混合注意力检
- YOLOv9改进,YOLOv9自研检测头融合HyCTAS的Self_Attention自注意力机制,2024,适合目标检测、分割任务
总结
请在我提供的YOLOv9代码修改,把环境配置好,数据集处理好,训练基本能成功,创作不易,请帮忙点一个爱心,谢谢观看!