CVPR 2024 机器学习方向总汇(多任务、联邦学习、迁移学习和对抗等)

1、Machine Learning(机器学习)多任务、联邦学习、迁移学习和对抗等

几篇CVPR关于multi-task的论文笔记整理,包括 一、 多任务课程学习Curriculum Learning of Multiple Tasks 1 --------------^CVPR2015/CVPR2016v--------------- 5 二、 词典对分类器驱动卷积神经网络进行对象检测Dictionary Pair Classifier Driven Convolutional Neural Networks for Object Detection 5 三、 用于同时检测分割的多尺度贴片聚合(MPA)* Multi-scale Patch Aggregation (MPA) for Simultaneous Detection and Segmentation ∗ 7 四、 通过多任务网络级联实现感知语义分割Instance-aware Semantic Segmentation via Multi-task Network Cascades 10 五、 十字绣网络多任务学习Cross-stitch Networks for Multi-task Learning 15 --------------^CVPR2016/CVPR2017v--------------- 23 六、 多任务相关粒子滤波器用于鲁棒物体跟踪Multi-Task Correlation Particle Filter for Robust Object Tracking 23 七、 多任务网络中的全自适应特征共享与人物属性分类中的应用Fully-Adaptive Feature Sharing in Multi-Task Networks With Applications in Person Attribute Classification 28 八、 超越triplet loss:一个深层次的四重网络,用于人员重新识别Beyond triplet loss: a deep quadruplet network for person re-identification 33 九、 弱监督级联卷积网络Weakly Supervised Cascaded Convolutional Networks 38 十、 从单一图像深度联合雨水检测去除Deep Joint Rain Detection and Removal from a Single Image 43 十一、 什么可以帮助行人检测?What Can Help Pedestrian Detection? (将额外的特征聚合到基于CNN的行人检测框架) 46 十二、 人员搜索的联合检测识别特征学习Joint Detection and Identification Feature Learning for Person Search 50 十三、 UberNet:使用多种数据集有限内存训练用于低,中,高级视觉的通用卷积神经网络UberNet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision using Diverse Datasets and Limited Memory 62 一共13篇,希望能够帮助到大家
### 半监督医学图像分割的研究进展 对于半监督医学图像分割领域,最新的研究集中在如何利用有限的标注数据大量的未标注数据来提高模型性能。一项重要工作提出了跨补丁密集对比学习框架,旨在解决组织病理学图像分割中标记数据成本高昂的问题[^3]。 另一项研究表明,通过不同iable神经网络拓扑搜索(DiNTS),可以有效提升三维医学图像分割的效果[^2]。该方法不仅提高了分割精度,还在计算效率上有显著改进。 针对CVPR 2024会议上的相关内容,虽然具体议程尚未公布,但基于以往趋势以及当前热门话题预测,预计会有更多关于: - 利用自监督预训练技术改善下游任务表现 - 结合多模态数据进行更精准的病变检测与分类 - 探索新的损失函数设计以促进更好泛化能力等方面的新成果被报道 为了获取最前沿的信息,建议关注CVPR官方网站发布的最新消息,并查阅ArXiv等平台上的预印本论文库,这些资源通常会提前发布即将发表的工作摘要或全文链接。 ```python import requests from bs4 import BeautifulSoup def fetch_cvpr_papers(year=2024, keyword="semi-supervised medical image segmentation"): url = f"https://openaccess.thecvf.com/CVPR{year}?term={keyword.replace(' ', '+')}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') papers = [] for item in soup.find_all('dt'): title = item.a.text.strip() link = "https://openaccess.thecvf.com/" + item.a['href'] abstract = item.find_next_sibling('dd').text.strip().split('\n')[1].strip() paper_info = { "title": title, "link": link, "abstract": abstract[:150]+'...' if len(abstract)>150 else abstract } papers.append(paper_info) return papers papers = fetch_cvpr_papers() for idx, paper in enumerate(papers[:5], start=1): print(f"{idx}. {paper['title']}\n Link: {paper['link']}\n Abstract: {paper['abstract']}\n") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值