AMCL(Adaptive Monte Carlo Localization)算法的原理详解

1. AMCL 的背景与定位任务

在移动机器人中,我们常遇到 定位问题
已知机器人的地图(Map)和传感器观测数据(激光雷达、里程计等),推断机器人在地图中的位置与姿态( x , y , θ x, y, \theta x,y,θ)。

这个任务属于 全局定位问题跟踪定位问题

  • 全局定位(Global Localization):机器人初始位置未知
  • 跟踪定位(Tracking):已知初始位置,大部分时候是位置跟踪

AMCL 是 蒙特卡洛定位(MCL) 的改进版,本质是 基于粒子滤波的贝叶斯定位方法,并引入 KLD-采样 动态调整粒子数量,减少计算量。


2. 粒子滤波(MCL)的基本原理

粒子滤波是通过一组粒子 { x t [ m ] } m = 1 M \{x_t^{[m]}\}_{m=1}^M { xt[m]}m=1M 来近似位置的概率分布 p ( x t ∣ z 1 : t , u 1 : t ) p(x_t|z_{1:t}, u_{1:t}) p(xtz1:t,u1:t)

粒子滤波步骤:

  1. 初始化(Initialize):在地图上均匀采样粒子,或围绕初始估计采样

  2. 预测(Prediction / Motion Update):根据运动模型更新粒子位置

    x t [ m ] ∼ p ( x t ∣ u t , x t − 1 [ m ] ) x_t^{[m]} \sim p(x_t | u_t, x_{t-1}^{[m]}) xt[m]p(xtut,xt1[m])

  3. 更新(Update / Measurement Update):根据传感器观测更新粒子权重

    w t [ m ] ∝ p ( z t ∣ x t [ m ] , m ) w_t^{[m]} \propto p(z_t | x_t^{[m]}, m) wt[m]p(ztxt[m],m)

  4. 重采样(Resampling):根据权重采样新粒子,避免权重退化


3. AMCL 的核心改进:KLD-Sampling

标准 MCL 缺点:

  • 粒子数固定,计算量大
  • 如果粒子数太少 → 定位
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云SLAM

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值