【自由能系列(中级),代码模拟】预测编码的核心:三个关键方程式的详解

预测编码的核心:三个关键方程式的详解
——探索预测编码背后的数学原理与应用

核心结论:预测编码是一种基于贝叶斯定理的理论框架,它通过三个关键方程式描述了大脑如何处理和解释来自环境的信号。这些方程式分别建立了贝叶斯定理的简化形式生成模型以及观察者模型,共同揭示了预测编码在感知-动作循环中的重要作用。

参考文献:
Jirsa, V.; Sheheitli, H. Entropy, Free Energy, Symmetry and Dynamics in the Brain. J. Phys. Complexity 2022, 3 (1), 015007. https://doi.org/10.1088/2632-072X/ac4bec.

在这里插入图片描述

【表格】预测编码的三个关键方程式

序号方程式名称方程式描述关键参数备注
1贝叶斯定理的简化形式 p ( x , y ∣ k ) = p ( y ∣ x , k ) p ( x ∣ k ) p ( y ∣ k ) p(x, y|k) = \frac{p(y|x, k)p(x|k)}{p(y|k)} p(x,yk)=p(yk)p(yx,k)p(xk) p ( x , y ∣ k ) p(x, y|k) p(x,yk):给定参数k下x和y的联合概率此方程式建立了状态变量x、y和参数k之间的概率关系,是预测编码的基础。
2Langevin方程(生成模型) Q ( t ) = f ( Q , k ) + v ( t ) Q(t) = f(Q, k) + v(t) Q(t)=f(Q,k)+v(t) Q ( t ) Q(t) Q(t):神经源级别的大脑激活状态; f ( Q , k ) f(Q, k) f(Q,k):确定性影响; v ( t ) v(t) v(t):波动力此方程式描述了大脑如何根据内部状态和参数生成预测,并考虑噪声的影响。
3观察者模型 Z ( t ) = h ( Q ( t ) ) + w Z(t) = h(Q(t)) + w Z(t)=h(Q(t))+w Z ( t ) Z(t) Z(t):实验可访问的传感器信号; h ( Q ( t ) ) h(Q(t)) h(Q(t)):正向模型; w w w:测量噪声此方程式将源活动Q(t)与实验可访问的传感器信号Z(t)联系起来,考虑了测量噪声的影响。在实际应用中,常假设h为恒等运算,w为零。

在这里插入图片描述

关键点关系描述

  1. 贝叶斯定理的简化形式是预测编码的起点,它建立了状态变量和参数之间的概率关系,为后续生成预测和更新模型提供了基础。
  2. Langevin方程(生成模型)描述了大脑如何根据当前状态和参数生成预测,并考虑了噪声的干扰。这是预测编码中“预测”部分的核心。
  3. 观察者模型则将大脑的预测与实际的传感器信号联系起来,通过比较预测和观测来更新大脑的内部模型。这是预测编码中“更新”部分的关键。
  4. 预测编码的循环过程包括生成预测、比较预测与观测、以及根据差异更新内部模型。这一过程与感知-动作的循环紧密相关,是大脑处理和理解环境信号的重要方式。
  5. 预测编码在生态心理学和神经科学中有着广泛的应用,它为我们理解大脑如何与环境进行交互提供了新的视角和方法。

在这里插入图片描述

Keywords:predictive coding, Bayesian theorem, Langevin equation, generative model, observer model, perception-action loop, ecological psychology, neural science.

关键词
#预测编码 #贝叶斯定理 #Langevin方程 #生成模型 #观察者模型 #感知-动作循环 #生态心理学 #神经科学

一个使用Python实现的预测编码过程的简单案例

在这个案例中,我们将模拟一个简单的情况,其中大脑试图预测并适应一个持续变化的环境信号。

import numpy as np
import matplotlib.pyplot as plt

# 参数设置
np.random.seed(0)
n_iterations = 100
true_signal = np.linspace(0, 1, n_iterations)  # 真实信号
initial_guess = 0.5  # 初始猜测
noise_level = 0.1  # 噪声水平
learning_rate = 0.1  # 学习率

# 初始化变量
signal_estimate = np.zeros(n_iterations)
signal_estimate[0] = initial_guess
prediction_errors = np.zeros(n_iterations)

# 预测编码循环
for t in range(1, n_iterations):
    # 生成预测(这里简单地使用上一个时间点的估计作为预测)
    prediction = signal_estimate[t-1]
    
    # 模拟观测(真实信号 + 噪声)
    observation = true_signal[t] + np.random.normal(0, noise_level)
    
    # 计算预测误差
    prediction_error = observation - prediction
    prediction_errors[t] = prediction_error
    
    # 更新信号估计
    signal_estimate[t] = signal_estimate[t-1] + learning_rate * prediction_error

# 可视化结果
plt.figure(figsize=(10, 5))
plt.plot(true_signal, label='True Signal', color='blue')
plt.plot(signal_estimate, label='Signal Estimate', linestyle='--', color='green')
plt.plot(prediction_errors, label='Prediction Errors', color='red', alpha=0.5)
plt.title('Prediction Coding Simulation')
plt.xlabel('Time')
plt.ylabel('Value')
plt.legend()
plt.show()

在这个代码示例中,我们模拟了一个持续变化的真实信号,并假设大脑试图通过预测编码来跟踪这个信号。大脑在每个时间点都会生成一个预测,然后将其与实际的观测进行比较,并根据预测误差来更新其内部模型(即信号估计)。最终,我们可视化了真实信号、信号估计以及预测误差

这个简单的案例展示了预测编码的基本思想,即大脑如何通过不断生成预测、比较预测与观测以及根据差异更新内部模型来处理和理解环境信号。在实际应用中,预测编码模型可能会更加复杂,包括多个变量、非线性关系以及更复杂的生成模型和观察者模型。

代码输出内容
在这里插入图片描述

  • 11
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神经美学_茂森

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值