Masked Relation Learning for DeepFake Detection

一、研究背景
1.现有deepfake检测方法大多关注于局部伪影或面部不协调,较少挖掘局部区域间的关系。
2.现有关系挖掘类的工作往往忽略了关系信息的传播。
3.遮挡建模在减轻信息冗余的同时促进高级语义信息(诱导性偏差较小)的挖掘,有助于提升网络的泛化性能。

二、研究动机
1.Deepfake技术会单独操纵视频中的每一帧,伪造结果缺乏时间连贯性。基于视频的检测技术更加关注相邻帧之间的时间不连贯性和时空不一致性,可降低对空间伪影的依赖并提升泛化性能。
2.将关系特征作为一种泛化模式可以提升检测性能,但大量的冗余关系信息会阻碍信息的表达。遮挡建模能减少信息的冗余,迫使模型习得更具泛化性的内在特征。

三、研究目标
从区域级关系中学习通用的鉴别性特征,减轻对视觉伪影的依赖。

四、技术路线

  • 本文将deepfake检测任务定义为图分类问题,每个面部区域作为一个图的结点,并对结点间的关系进行建模。
  • 对部分关系进行屏蔽,减少冗余并促进模型对全局结构的感知
  • 实现在无监督的情况下定位面部伪造区域。
    在这里插入图片描述

1.时空注意力模块(STA):
学习不同面部区域的注意力特征。

  • 将特征图 F 0 t F_{0}^t F0t转换为注意力图 F A t F_{A}^t FAt
  • 用注意力图强调特征图得到注意力特征图 F t F^t Ft
  • 对注意力特征图进行平均归一化得到注意力特征向量 V t V^t Vt
    在这里插入图片描述
  • 设置正交多样性损失 L o d L_{od} Lod使不同注意力特征向量关注不同面部信息
  • T为视频片段划分数量, V t ∈ R N ∗ C V^t\in \mathbb{R}^{N*C} VtRNC N N N为注意力头数量, I I I为单位阵
  • (4)使不同注意力头的输出差异尽可能大
    在这里插入图片描述
  • 设置时间一致性损失 L t c L_{tc} Ltc,使每个注意力头在时间维度上追踪各自区域
  • (5)使相邻帧之间的注意力向量保持一致
    在这里插入图片描述

2.遮挡关系学习模块(MRL):
屏蔽部分区域间的相关性以减少信息冗余,以此促进对本质特征的学习并捕获全局视角下的不规则关系。

  • 最小屏蔽策略:计算门限值 q q q p p p为预定义参数
    在这里插入图片描述

  • 随机屏蔽策略:根据伯努利分布采样 η \eta η
    在这里插入图片描述

  • 利用TGCN捕获不规则关系:TGCN由GCN和GRU构成

  • 在这里插入图片描述

  • 对特征关系图进行图卷积计算
    在这里插入图片描述

  • 对隐藏层进行图卷积计算
    在这里插入图片描述

  • 更新隐藏层
    在这里插入图片描述
    3.特征分类
    在这里插入图片描述
    4.损失函数
    在这里插入图片描述
    5.算法流程
    在这里插入图片描述
    在这里插入图片描述
    五、实验结果
    Although our method has sub-optimal performance on FF++(HQ), it outperforms state-of-the-art approaches on detecting
    unseen deepfake datasets. Strong generalization ability is one of the pursuits of deepfake detection. Our method effectively promotes the generalization ability of detectors.
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    Hereby we localize the fake regions by Grad-CAM in Fig. 9. We observe that our method can highlight the fake regions of
    manipulated faces. For instance, NeuralTextures only modifies the mouth region
    在这里插入图片描述

回答: 本文探索了将普通的Vision Transformer (ViT)作为目标检测的骨干网络。通过对ViT架构进行微调,而无需重新设计分层骨干进行预训练,我们的普通骨干检测器可以取得竞争性的结果。研究发现,只需从单尺度特征图构建简单的特征金字塔(无需常见的FPN设计),并使用窗口注意(无需移动)辅助少量的跨窗口传播块即可。通过使用预先训练的纯ViT主干作为Masked Autoencoders (MAE),我们的检测器ViTDet可以与之前基于分层骨干的领先方法竞争,在COCO数据集上达到61.3 APbox的性能。我们希望这项研究能够引起对普通骨干检测器的关注。\[1\]\[2\]\[3\] #### 引用[.reference_title] - *1* [论文阅读-ViTDet:Exploring Plain Vision Transformer Backbones for Object Detection](https://blog.csdn.net/qq_37662375/article/details/126675811)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [ViTDet:Exploring Plain Vision Transformer Backbonesfor Object Detection(arXiv 2022)](https://blog.csdn.net/qq_54828577/article/details/127262932)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down28v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值