arxiv-2024-Test-Time Domain Generalization for Face Anti-Spoofing

一、研究背景
1.对抗性学习、元学习、对比学习等策略在训练过程中学习域不变特征,以增强泛化性。但是,当处理与源域有较大差异的未知域时,性能仍会下降。
2.域自适应需要用大量数据更新模型,带来较大计算负担且不适用于现实场景。
3.以往test-time域泛化的风格基底是粗糙且不能自适应的。

二、研究动机
测试数据不仅可以用来预测分类,还可以用来增强模型的泛化性。

三、研究目标
1.利用测试数据增强模型的泛化性。
2.最大限度表示已知风格空间,并将未知域样本映射到已知域。

四、技术路线
在这里插入图片描述

1.提出Test-Time Style Projection(TTSP),通过一组样式基底,将未知域的样本映射到源域分布。

  • 计算通道维度的均值方差表征风格基底。
    在这里插入图片描述
  • 利用余弦距离,计算当前图片与风格基底之间的风格分布差异。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二苏旧局吖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>