一、研究背景
1.对抗性学习、元学习、对比学习等策略在训练过程中学习域不变特征,以增强泛化性。但是,当处理与源域有较大差异的未知域时,性能仍会下降。
2.域自适应需要用大量数据更新模型,带来较大计算负担且不适用于现实场景。
3.以往test-time域泛化的风格基底是粗糙且不能自适应的。
二、研究动机
测试数据不仅可以用来预测分类,还可以用来增强模型的泛化性。
三、研究目标
1.利用测试数据增强模型的泛化性。
2.最大限度表示已知风格空间,并将未知域样本映射到已知域。
四、技术路线
1.提出Test-Time Style Projection(TTSP),通过一组样式基底,将未知域的样本映射到源域分布。
- 计算通道维度的均值方差表征风格基底。
- 利用余弦距离,计算当前图片与风格基底之间的风格分布差异。