Rule-Guided Compositional Representation Learning on Knowledge Graphs-学习笔记

本文探讨了如何在知识图谱(KG)中进行表示学习,利用Horn规则增强路径和关系的准确性,以及通过DPTransE结合潜在和图形特征。论文提出了一种规则和路径联合嵌入(RPJE)方法,从KG中提取逻辑规则,利用这些规则进行组合表示学习,从而提高KG嵌入的解释性和精确性。RPJE通过编码规则并结合路径增强模型,考虑了规则的置信度和路径的语义结构,旨在实现更有效的知识图谱表示。
摘要由CSDN通过智能技术生成

Rule-Guided Compositional Representation Learning on Knowledge Graphs

1.表示学习知识图谱(KG)是将KG的实体和关系嵌入到低维连续向量空间中。

2.可以使用Horn规则在语义级别上组合路径和关联关系,以提高学习路径上KG嵌入的精度,并增强表示学习的可解释性。

3.DPTransE共同构建了KG的潜在特征和图形特征之间的交互,以提供精确而有区别的嵌入。

4.路径增强模型:由于多跳路径可以提供KG中看似未连接的实体之间的关系,因此KG中存在的路径已受到更多关注,可以与KG嵌入相结合。

5.论文提出了一种新颖的基于规则和基于路径的联合嵌入(RPJE)方案,该方案利用了逻辑规则的可解释性和准确性, KG嵌入的一般化以及路径的补充语义结构。特别是,首先从KG中提取以Horn子句形式存在的不同长度(规则主体中的关系数)的逻辑规则,并精心编码以表示学习。然后,使用长度为2的规则来精确地组成路径,而明确使用长度为1的规则来创建关系之间的语义关联并约束关系嵌入。而且,在优化中还考虑了每个规则的置信度,以保证将规则应用于表示学习的可用性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>