Candidate是什么

参考了网上的一些博客以及文章,并没有得到很满意的解释,这里说一说自己对Candidate的理解

Candidate class,中文译为“候选集”,其作用是作为一种特殊的训练集而存在。

首先看candidate class的定义:

候选集是一种特殊的训练集,换而言之,是训练集的子集。数据处理的过程,为了满足一些特殊条件而分化出来的子集,用于训练起到了加强样本特征的作用。

在分化出candidate class的过程中,数据处理者需要对原始的数据进行一些处理,为了模型的训练效果更好,需要额外筛选出一部分数据。候选集的诞生时间一般是在数据处理之后,特征工程之前。

候选集还强调一定程度的覆盖率,覆盖率 = 候选集样本数量/总体样本数量。

这里再讲讲正样本、负样本的理解

正样本就是你需要的,需要依托这种样本来训练出你的模型,对你的模型的训练有正向帮助的样本

负样本就是你不需要的,对你最终要训练出的模型有bad performance,或者说跟你要训练的目标根本不想关的样本

那么是不是负样本就应该在训练的过程中消失掉呢?

NO!因为在做真实环境下应用的场景,负样本是不可能避免的。

eg:

在做CNN进行猫狗识别的模型训练过程中,有价值的训练数据是猫或者狗图形所占的像素点,没有价值的训练数据类似于背景环境等等,会对模型的训练有一定的干扰(因为真实的猫狗所存在的环境,什么场景都有可能,房间啦,花园啦等等)。所以还需要一定的负样本来对模型进行辅助的训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值