研究概要
肌层浸润性膀胱癌(Muscle-Invasive Bladder Cancer, MIBC)是一类侵袭性强、预后差的泌尿系统肿瘤。当前标准治疗方案为新辅助化疗(Neoadjuvant Chemotherapy, NAC)联合根治性膀胱切除术(Radical Cystectomy, RC),然而,NAC仅能使约35%的患者实现完全病理缓解(pathologic complete response, pCR),而pCR与显著延长的总生存期密切相关。由于MIBC在组织形态和分子层面具有显著的异质性,现有的预测模型(如基于分子亚型、DNA修复缺陷、放射组学等)仍难以准确区分对NAC有反应的患者与无反应者。多模态人工智能方法近年来在临床预测中展现出巨大潜力,尤其是将病理图像(WSIs)与转录组信息整合,能够更全面刻画肿瘤生物学特征。本研究开发了一种可解释的图神经网络驱动的多模态深度学习框架(GMLF),旨在融合H&E全视野图像与基因表达数据,精确预测MIBC患者对NAC的反应,并探索潜在的组织学与分子生物标志物,为个体化治疗策略提供依据。
研究设计
-
数据来源:来自SWOG S1314前瞻性临床试验(N=237),最终纳入180例同时具备WSI和微阵列GEX数据的患者,其中56例为pCR(31.1%)。
-
建模策略:GMLF包含三个分支:
-
图像嵌入分支(Neural Embedding Branch):基于SlideGraph+构建图神经网络(GNN),利用ResNet50提取每个patch的嵌入特征。
-
细胞类型与形态分支(Cell-type and Morphology Branch):基于HoVer-Net提取每个patch中细胞类型比例及形态学参数。
-
基因表达分支(Gene Expression Branch):基于多层感知机(MLP)处理1071维基因表达向量。
-
-
预测输出:每个分支产生一个预测分值,通过晚期融合(late fusion)与Platt scaling转换为最终预测概率。
-
评估方式:80/20训练-测试划分 + 5折交叉验证;并进行单模态/双模态消融实验;使用SHAP框架进行模型可解释性分析。
核心结果
1 — GMLF模型结构图
该图构建了一个三分支的多模态预测架构,具体包括:
-
WSI Neural Embe