【论文复现】GhostNet_GhostModule(2020)

在这里插入图片描述

前言

论文地址: https://arxiv.org/abs/1911.11907.
源码(pytorch):https://github.com/huawei-noah/CV-Backbones/tree/master/ghostnet_pytorch.
贡献:
1、提出了新型的轻量化网络模块 Ghost Module (GhostConv 和 Ghost bottleneck)
2、提出新型轻量化网络GhostNet

一、背景

由于硬件资源以及计算量的限制,在嵌入式设备当中部署卷积神经网络是很困难的。想要解决这个问题,就要想方设法的使网络模型更加的轻量化。现存的网络模型轻量化方法一般有两种:模型压缩和轻量化网络设计。

模型压缩:

  1. pruning connection: 减去一些不重要的神经元连接;
  2. channel pruning: 通道剪枝,减去一些无用的通道,以便加速运算;
  3. model quantization: 模型量化,在具有离散值的神经网络中对权重或激活函数进行压缩和计算加速;
  4. tensor decomposition: 张量分解,通过权重的冗余性和low-link来减少参数或计算;
  5. knowledge distillation: 知识蒸馏, 利用大模型来教小模型,提高小模型的性能

轻量化网络设计:

  1. Xception: depthwise conv operation
  2. MobileNet 系列: 深度可分离卷积 depthwise separable conv、inverted resdual block、AutoML technology
  3. ShuffleNet 系列: channel shuffle operation

尽管这些模型获得了良好的性能,但是feature map之间的相关性和冗余性一直没有得到很好的利用。

那么什么是feature map之间的相关性和冗余性呢?

如下图,作者在实验过程中将ResNet50的第一个残差组的feature map进行可视化,发现里面有三对feature map(如下图中的红绿蓝三对feature map)它们极其相似,作者认为这些feature map对之间是冗余的(相关的)。

在这里插入图片描述
作者考虑到这些feature map层中的冗余信息可能是一个成功模型的重要组成部分,正是因为这些冗余信息才能保证输入数据的全面理解,所以作者在设计轻量化模型的时候并没有试图去除这些冗余feature map,而是尝试使用更低成本的计算量来获取这些冗余feature map。

作者生动的将这些冗余的feature map称为 Ghost(幽灵)

其他两个前提知识:

  1. Ghost feature maps 和 Intrinsic feature maps 是什么?

    intrinsic feature maps 执行 linear operations 得到 ghost feature maps。在这里插入图片描述
    如上图,一部分是Intrinic,而另外一部分是可以由 intrinsic 通过cheap operations来生成的,因为本来就是由intrinsic feature maps 生成的,所以肯定会有很多的冗余信息,所以称其为 ghost feature maps。

  2. Linear transformations 和 Cheap operations 是什么?
    通读全文会发现到处都是Linear transformations和Cheap operations ,其实它们两者是等价的,即是 3x3的卷积,或者5x5的卷积。

ok,关于背景知识大概就是这些,下面继续学习Ghost的核心模块。

二、Ghost Module

这部分是本论文最创新最核心的模块。

先看看正常卷积模块是什么样的,如下图:
在这里插入图片描述

再看看我们的新型轻量卷积模块 Ghost Module:

在这里插入图片描述
第一步: 少量卷积(比如正常用32个卷积核,这里就用16个,从而减少一半的计算量)
第二步:cheap operations,如图中的Φ表示,从问题3中可知,Φ 是诸如3x3 或 5x5的卷积,并且是逐个特征图的进行卷积(Depth-wise convolutional)。

比较两种的FLOPs有:
在这里插入图片描述
可以看出,使用Ghost Module模块,FLOPs一般可以减少为原来的 1/s。

这里再科普一下:
FLOPs(floating point operations):可以用来衡量算法/模型的复杂度。
计算方式: F L O P s = C o u t ∗ H o u t ∗ W o u t ∗ C i n ∗ K ∗ K FLOPs = C_{out} * H_{out} * W_{out} * C_{in} * K * K FLOPs=CoutHoutWoutCinKK
FLOPS(floating point operations per second):意指每秒浮点运算次数,理解为计算速度。是一个衡量硬件性能的指标。

最后再对比下 Depthwise Separate Conv(深度可分卷积) 和 Ghost Module(幻象模块):

  • 深度可分卷积是用深度卷积处理每一个特征通道上的空间信息,然后用点卷积进行通道间的特征融合;
  • 而幻象模块是用正常的卷积生成部分真实feature map,再用这些真实的feature map经过线性变换 (Cheap operations ) 得到幻象特征层(Ghost feature map),最终由真实特征层和幻象特征层组成完整特征层。

自己用pytorch实现(YOLOV5中):

class Conv(nn.Module):
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        """
        Standard convolution  conv+BN+act
        :params c1: 输入的channel值
        :params c2: 输出的channel值
        :params k: 卷积的kernel_size
        :params s: 卷积的stride
        :params p: 卷积的padding  一般是None  可以通过autopad自行计算需要pad的padding数
        :params g: 卷积的groups数  =1就是普通的卷积  >1就是深度可分离卷积
        :params act: 激活函数类型   True就是SiLU()/Swish   False就是不使用激活函数
                     类型是nn.Module就使用传进来的激活函数类型
        """
        super(Conv, self).__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        # 激活函数自己选择
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def fuseforward(self, x):
        """
        前向融合计算  减少推理时间????
        """
        return self.act(self.conv(x))

class GhostConv(nn.Module):
    # Ghost Convolution https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):  # ch_in, ch_out, kernel, stride, groups
        super(GhostConv, self).__init__()
        c_ = c2 // 2  # hidden channels
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)  # 也可以改成3x3

    def forward(self, x):
        y = self.cv1(x)
        return torch.cat([y, self.cv2(y)], 1)

三、Ghost Bottleneck

在这里插入图片描述
幻象瓶颈层是为轻量化网络模型而设计的类似残差块的结构。幻象瓶颈层由两个幻象模块组成。第一个幻象模块作为扩张层(expansion layer),用于增加通道数目,输出channle / 输入channel 我们称为扩张率(expansion ratio);第二个幻象模块用于减少通道数目,使其输入数据通道数匹配,进行shortcut。如上图,是论文中设计的两种幻象瓶颈层,左边的Stride=1,右边的Stride=2,对于stride=2的shortcut我在阅读源码时发现,并不是直接Identity连接,而是先经过一个DWConv + Conv,再进行shortcut连接的。

自己用pytorch实现(YOLOV5中):

class GhostBottleneck(nn.Module):
    # Ghost Bottleneck https://github.com/huawei-noah/ghostnet
    def __init__(self, c1, c2, k=3, s=1):  # ch_in, ch_out, kernel, stride
        super(GhostBottleneck, self).__init__()
        c_ = c2 // 2
        self.conv = nn.Sequential(GhostConv(c1, c_, 1, 1),  # pw
                                  DWConv(c_, c_, k, s, act=False) if s == 2 else nn.Identity(),  # dw
                                  GhostConv(c_, c2, 1, 1, act=False))  # pw-linear
        self.shortcut = nn.Sequential(DWConv(c1, c1, k, s, act=False),
                                      Conv(c1, c2, 1, 1, act=False)) if s == 2 else nn.Identity()

    def forward(self, x):
        return self.conv(x) + self.shortcut(x)

这个模块是即插即用的,很方便,所以大家都可以试试。

四、GhostNet

GhostNet采用的是MobileNetV3的网络结构,只是将其中的瓶颈层改成幻想瓶颈层Ghost Bottleneck。

具体网络结构如下:
在这里插入图片描述
官方代码(与我写的略有不同):

"""
Creates a GhostNet Model as defined in:
GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu.
https://arxiv.org/abs/1911.11907
Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math



def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


def hard_sigmoid(x, inplace: bool = False):
    if inplace:
        return x.add_(3.).clamp_(0., 6.).div_(6.)
    else:
        return F.relu6(x + 3.) / 6.


class SqueezeExcite(nn.Module):
    def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
                 act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
        super(SqueezeExcite, self).__init__()
        self.gate_fn = gate_fn
        reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
        self.act1 = act_layer(inplace=True)
        self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)

    def forward(self, x):
        x_se = self.avg_pool(x)
        x_se = self.conv_reduce(x_se)
        x_se = self.act1(x_se)
        x_se = self.conv_expand(x_se)
        x = x * self.gate_fn(x_se)
        return x


class ConvBnAct(nn.Module):
    def __init__(self, in_chs, out_chs, kernel_size,
                 stride=1, act_layer=nn.ReLU):
        super(ConvBnAct, self).__init__()
        self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False)
        self.bn1 = nn.BatchNorm2d(out_chs)
        self.act1 = act_layer(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.bn1(x)
        x = self.act1(x)
        return x


class GhostModule(nn.Module):
    def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
        super(GhostModule, self).__init__()
        self.oup = oup
        init_channels = math.ceil(oup / ratio)
        new_channels = init_channels * (ratio - 1)

        self.primary_conv = nn.Sequential(
            nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False),
            nn.BatchNorm2d(init_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),
        )

        self.cheap_operation = nn.Sequential(
            nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False),
            nn.BatchNorm2d(new_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),
        )

    def forward(self, x):
        x1 = self.primary_conv(x)
        x2 = self.cheap_operation(x1)
        out = torch.cat([x1, x2], dim=1)
        return out[:, :self.oup, :, :]


class GhostBottleneck(nn.Module):
    """ Ghost bottleneck w/ optional SE"""

    def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
                 stride=1, act_layer=nn.ReLU, se_ratio=0.):
        super(GhostBottleneck, self).__init__()
        has_se = se_ratio is not None and se_ratio > 0.
        self.stride = stride

        # Point-wise expansion
        self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)

        # Depth-wise convolution
        if self.stride > 1:
            self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
                                     padding=(dw_kernel_size - 1) // 2,
                                     groups=mid_chs, bias=False)
            self.bn_dw = nn.BatchNorm2d(mid_chs)

        # Squeeze-and-excitation
        if has_se:
            self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
        else:
            self.se = None

        # Point-wise linear projection
        self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)

        # shortcut
        if (in_chs == out_chs and self.stride == 1):
            self.shortcut = nn.Sequential()
        else:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
                          padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False),
                nn.BatchNorm2d(in_chs),
                nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
                nn.BatchNorm2d(out_chs),
            )

    def forward(self, x):
        residual = x

        # 1st ghost bottleneck
        x = self.ghost1(x)

        # Depth-wise convolution
        if self.stride > 1:
            x = self.conv_dw(x)
            x = self.bn_dw(x)

        # Squeeze-and-excitation
        if self.se is not None:
            x = self.se(x)

        # 2nd ghost bottleneck
        x = self.ghost2(x)

        x += self.shortcut(residual)
        return x


class GhostNet(nn.Module):
    def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2):
        super(GhostNet, self).__init__()
        # width: 宽度因子
        # setting of inverted residual blocks
        self.cfgs = cfgs
        self.dropout = dropout

        # building first layer
        output_channel = _make_divisible(16 * width, 4)
        self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(output_channel)
        self.act1 = nn.ReLU(inplace=True)
        input_channel = output_channel

        # building inverted residual blocks
        stages = []
        block = GhostBottleneck
        for cfg in self.cfgs:
            layers = []
            for k, exp_size, c, se_ratio, s in cfg:
                output_channel = _make_divisible(c * width, 4)
                hidden_channel = _make_divisible(exp_size * width, 4)
                layers.append(block(input_channel, hidden_channel, output_channel, k, s,
                                    se_ratio=se_ratio))
                input_channel = output_channel
            stages.append(nn.Sequential(*layers))

        output_channel = _make_divisible(exp_size * width, 4)
        stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
        input_channel = output_channel

        self.blocks = nn.Sequential(*stages)

        # building last several layers
        output_channel = 1280
        self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
        self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
        self.act2 = nn.ReLU(inplace=True)
        self.classifier = nn.Linear(output_channel, num_classes)

    def forward(self, x):
        x = self.conv_stem(x)
        x = self.bn1(x)
        x = self.act1(x)
        x = self.blocks(x)
        x = self.global_pool(x)
        x = self.conv_head(x)
        x = self.act2(x)
        x = x.view(x.size(0), -1)
        if self.dropout > 0.:
            x = F.dropout(x, p=self.dropout, training=self.training)
        x = self.classifier(x)
        return x


def ghostnet(**kwargs):
    """
    Constructs a GhostNet model
    """
    cfgs = [
        # k, t, c, SE, s
        # stage1
        [[3, 16, 16, 0, 1]],
        # stage2
        [[3, 48, 24, 0, 2]],
        [[3, 72, 24, 0, 1]],
        # stage3
        [[5, 72, 40, 0.25, 2]],
        [[5, 120, 40, 0.25, 1]],
        # stage4
        [[3, 240, 80, 0, 2]],
        [[3, 200, 80, 0, 1],
         [3, 184, 80, 0, 1],
         [3, 184, 80, 0, 1],
         [3, 480, 112, 0.25, 1],
         [3, 672, 112, 0.25, 1]
         ],
        # stage5
        [[5, 672, 160, 0.25, 2]],
        [[5, 960, 160, 0, 1],
         [5, 960, 160, 0.25, 1],
         [5, 960, 160, 0, 1],
         [5, 960, 160, 0.25, 1]
         ]
    ]
    return GhostNet(cfgs, **kwargs)


if __name__ == '__main__':
    model = ghostnet()
    model.eval()
    print(model)
    input = torch.randn(32, 3, 320, 256)
    y = model(input)
    print(y.size())

代码和ResNet很像,都是函数式的模块化开发,重点掌握Ghost Module和Ghost Bottleneck 两部分的代码就不会很难的,感兴趣的自己可以看看。

Reference

GhostNet 博客1.

GhostNet 解读及代码实验 博客2.

GhostNet b站视频讲解.

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值