深度学习:多任务学习-几篇综述简介

本文探讨了多任务学习在深度神经网络中的应用,包括其优势、挑战及最新进展。介绍了多任务学习的基本概念,以及如何通过不同的结构设计、优化方法和任务间关系的学习来最小化负面迁移。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. An Overview of Multi-Task Learning in Deep Neural Networks

这篇文章完整翻译了一下,见https://blog.csdn.net/qq_38290475/article/details/114283471?spm=1001.2014.3001.5501


2. MULTI-TASK LEARNING WITH DEEP NEURAL NETWORKS: A SURVEY

多任务学习有诸如提高数据使用效率、通过共享表征减轻过拟合、以及通过利用辅助任务加速学习的好处。但同时学习不同的任务也有一些设计上和优化上的问题,并且选择应该共同学习的任务本身也并不是一件容易的事情。本文给出了利用深度学习进行多任务学习的方法概述,目的是总结一下该领域完善的和最近的一些方向。我们的讨论主要基于将现有的深度多任务学习技术分为下面三类:结构优化方法任务关系学习

在多任务学习中存在一些单任务学习时不存在的难点。具体而言,就是不同的任务可能有矛盾的需求。此时,提高一个任务的性能可能会损害另一个任务的性能,这被称为负面迁移或破坏性干扰(negative transfer or destructive interference)。最小化负面迁移是多任务学习的主要目标。已经有很多结构被设计来缓解负面迁移,主要基准是使得信息在正面迁移的任务之间流通,而在负面迁移的任务之间不鼓励共享。

最早的方法被分为两类:硬参数共享和软参数共享。本文把硬参数共享归为多任务结构,而把软参数共享扩充为多任务优化,另外还有一类任务关系学习。文章剩下的内容如下图所示。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值