定义1: 设 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集, f f f是 E E E上的函数,如果对于任意常数 t t t,集合 E ( f > t ) = d e f { x ∈ R n ∣ x ∈ E , f ( x ) > t } E(f>t)\stackrel{\mathrm{def}}{=}\{x \in \mathbb{R}^n|x \in E,f(x)>t\} E(f>t)=def{x∈Rn∣x∈E,f(x)>t}都是可测集,则称函数 f f f是 E E E上的Lebesgue可测函数,简称为 E E E上的可测函数,也可以称为 f f f在 E E E上可测。
定理1: 设 f f f是可测集 E E E上一个实函数,则以下主诸条件互相等价:
(1) f ∈ M f \in \mathcal{M} f∈M;
(2) ∀ t ∈ R \forall t \in \mathbb{R} ∀t∈R, E ( f ≥ t ) E(f\ge t) E(f≥t)是可测集;
(3) ∀ t ∈ R \forall t \in \mathbb{R} ∀t∈R, E ( f < t ) E(f < t) E(f<t)是可测集;
(4) ∀ t ∈ R \forall t \in \mathbb{R} ∀t∈R, E ( f ≤ t ) E(f\le t) E(f≤t)是可测集。
定义2: 设 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集, E 1 , E 2 , ⋯ , E m E_1,E_2,\cdots,E_m E1,E2,⋯,Em是 E E E的互不相交的可测子集,且 ⋃ j = 1 m E j = E \bigcup\limits_{j=1}^mE_j =E j=1⋃mEj=E, α 1 , α 2 , ⋯ , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,⋯,αm是常数,称 E E E上函数 ψ ( x ) = ∑ i = 1 m α i χ E i ( x ) \psi(x)=\sum\limits_{i=1}^m\alpha_i \chi_{E_i}(x) ψ(x)=i=1∑mαiχEi(x)为简单函数。特别地,当每个 E i E_i Ei是矩体时,称 ψ ( x ) \psi(x) ψ(x)是阶梯函数。
定理2: 对任意可测集 E E E, E E E上的简单函数是可测的。
定理3: 设 E ⊂ R n E \sub \mathbb{R}^n E⊂Rn是可测集,则 f ( x ) f(x) f(x)是 E E E上非负可测函数的充分必要条件是,存在 E E E上的非负简单函数列 { ψ k ( x ) } \{\psi_k(x)\} {ψk(x)},使得 0 ≤ ψ 1 ( x ) ≤ ψ 2 ( x ) ≤ ⋯ ≤ ψ k ( x ) ≤ ⋯ , 0\le \psi_1(x)\le \psi_2(x)\le \cdots\le \psi_k(x)\le \cdots, 0≤ψ1(x)≤ψ2(x)≤⋯≤ψk(x)≤⋯, lim k → ∞ ψ k ( x ) = f ( x ) , ∀ x ∈ E , \lim\limits_{k \rightarrow \infty}\psi_k(x)=f(x),\quad \forall x \in E, k→∞limψk(x)=f(x),∀x∈E,