Lebesgue可测函数

定义1: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集, f f f E E E上的函数,如果对于任意常数 t t t,集合 E ( f > t ) = d e f { x ∈ R n ∣ x ∈ E , f ( x ) > t } E(f>t)\stackrel{\mathrm{def}}{=}\{x \in \mathbb{R}^n|x \in E,f(x)>t\} E(f>t)=def{xRnxE,f(x)>t}都是可测集,则称函数 f f f E E E上的Lebesgue可测函数,简称为 E E E上的可测函数,也可以称为 f f f E E E上可测。

定理1: f f f是可测集 E E E上一个实函数,则以下主诸条件互相等价:
(1) f ∈ M f \in \mathcal{M} fM
(2) ∀ t ∈ R \forall t \in \mathbb{R} tR E ( f ≥ t ) E(f\ge t) E(ft)是可测集;
(3) ∀ t ∈ R \forall t \in \mathbb{R} tR E ( f < t ) E(f < t) E(f<t)是可测集;
(4) ∀ t ∈ R \forall t \in \mathbb{R} tR E ( f ≤ t ) E(f\le t) E(ft)是可测集。

定义2: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集, E 1 , E 2 , ⋯   , E m E_1,E_2,\cdots,E_m E1,E2,,Em E E E的互不相交的可测子集,且 ⋃ j = 1 m E j = E \bigcup\limits_{j=1}^mE_j =E j=1mEj=E α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm是常数,称 E E E上函数 ψ ( x ) = ∑ i = 1 m α i χ E i ( x ) \psi(x)=\sum\limits_{i=1}^m\alpha_i \chi_{E_i}(x) ψ(x)=i=1mαiχEi(x)为简单函数。特别地,当每个 E i E_i Ei是矩体时,称 ψ ( x ) \psi(x) ψ(x)是阶梯函数。

定理2: 对任意可测集 E E E E E E上的简单函数是可测的。

定理3: E ⊂ R n E \sub \mathbb{R}^n ERn是可测集,则 f ( x ) f(x) f(x) E E E上非负可测函数的充分必要条件是,存在 E E E上的非负简单函数列 { ψ k ( x ) } \{\psi_k(x)\} {ψk(x)},使得 0 ≤ ψ 1 ( x ) ≤ ψ 2 ( x ) ≤ ⋯ ≤ ψ k ( x ) ≤ ⋯   , 0\le \psi_1(x)\le \psi_2(x)\le \cdots\le \psi_k(x)\le \cdots, 0ψ1(x)ψ2(x)ψk(x), lim ⁡ k → ∞ ψ k ( x ) = f ( x ) , ∀ x ∈ E , \lim\limits_{k \rightarrow \infty}\psi_k(x)=f(x),\quad \forall x \in E, klimψk(x)=f(x),xE,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值