【CV数据集介绍-01】9 Facial Expressions for YOLO 数据集:深入解析

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

  在人工智能与情感计算领域,面部表情检测技术正逐渐成为理解人类情绪状态、优化人机交互体验以及辅助心理健康诊断的关键。9 Facial Expressions for YOLO 数据集作为一种高质量的资源,为这一领域的研究与开发提供了坚实的数据基础。
在这里插入图片描述

一、 数据集概述

  该数据集整合了来自 Roboflow Universe 上多个高质量面部表情数据集,经过精心筛选与预处理,剔除了重复与损坏文件,确保了数据的纯净性与可靠性。它涵盖了超 70000 张面部表情图像,数据集大小一共4.18G,图片格式主要为 JPG 和 PNG,尺寸多样,以适应不同模型训练需求。

1.1 数据的文件格式如下

在这里插入图片描述

1.2 images文件夹下的图片展示:

在这里插入图片描述

1.3 labels文件夹下的文件和具体文件内容展示:

在这里插入图片描述

在这里插入图片描述

1.4 数据集中数据配置文件的展示

在这里插入图片描述

二、表情类别详解

  数据集包含 9 种独特的表情类别,每种表情都有其典型的面部特征:

  1. 愤怒(Angry):眉毛下垂紧皱,眼睑和嘴唇紧张,仿佛被怒火包围。
  2. 轻蔑(Contempt):嘴角一侧微微抬起,伴随下垂的眼角,给人不屑一顾之感。
  3. 厌恶(Disgust):上嘴唇上抬,鼻子皱起,表现出对事物的极度反感。
  4. 恐惧(Fear):嘴巴和眼睛张大,身体微微颤抖,展现出对未知危险的恐惧。
  5. 高兴(Happy):嘴角上扬,面颊抬起,散发出愉悦的气息。
  6. 自然(中性,Natural/Neutral):面部肌肉放松,五官处于自然状态。
  7. 悲伤(Sad):眉毛收紧,嘴角下拉,透露出失落的情绪。
  8. 困倦(Sleepy):眼睛半闭,眼神迷离,呈现出疲惫的状态。
  9. 惊讶(Surprised):下颚下垂,嘴巴张开呈“O”型,满是不可思议的神情。

三、数据分布情况

  据相关实验数据,本次使用的 9 Facial Expressions for YOLO 数据集中,共选取了 68264 张图像用于训练,1720 张图像作为验证集,1700 张图像作为测试集。每张图像都经过标注,属于上述 9 种表情类别中的一种。整体数据分布较为均衡,但可能存在一定程度的类别不平衡,例如 “Contempt” 或 “Sleepy” 等表情的样本数量可能少于 “Happy” 或 “Sad” 等常见表情。

四、数据集的应用场景

  1. 情感分析与人机交互:通过实时捕捉用户情绪,智能设备能够提供个性化服务。
  2. 心理健康与行为研究:借助表情识别辅助抑郁症等心理疾病的诊断。
  3. 智能安防与监控:结合人脸识别技术,实时监测人群情绪,提高公共安全。
  4. 娱乐与传媒:用于影视制作、游戏开发中的表情捕捉,以及个性化表情包的制作。

  综上所述,9 Facial Expressions for YOLO 数据集凭借其丰富的表情类别、充足的样本数量以及高质量的标注信息,为研究人员和开发者提供了一个理想的实验平台,有力地推动了面部表情识别技术的发展与应用。


  注: 博主目前收集了6900+份相关数据集,有想要的可以领取部分数据:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值