RT-DETR改进最新LSKNet结构:顶会ICCV2023|原创改进遥感旋转目标检测SOTA!大选择性卷积核的领域首次探索

本文介绍了在顶会ICCV2023中,对RT-DETR模型进行的LSKNet结构改进,以解决遥感场景中目标检测的问题。通过引入大选择性卷积核,LSKNet能动态调整感受野,显著提高HRSC2016、DOTA-v1.0和FAIR1M-v1.0等基准的性能。作者提供了详细的代码实践和配置文件,展示了如何将LSKNet应用于RT-DETR的训练过程中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

💡本篇内容:RT-DETR改进最新LSKNet结构:顶会ICCV2023|原创改进遥感旋转目标检测SOTA!大选择性卷积核的领域首次探索

💡🚀🚀🚀本博客 RT-DETR + 遥感旋转目标检测SOTA!大选择性卷积核的领域首次探索 LSKNet 源代码改进 适用于 RT-DETR… 等等YOLO系列 按步骤操作运行改进后的代码即可

💡适合用来改进作为 🚀改进点 顶会ICCV2023

💡该专栏《剑指RT-DETR原创改进》只改进RT-DETR模型相关的内容

💡论文:https://arxiv.org/pdf/2303.09030.pdf

💡重点:同时博客 还基于该顶会ICCV2023论文模块,进行二次原创改进模块结构,具有多种配置,原创

一、LSKNet论文理论部分 + RT-DETR代码实践

最近关于遥感目标检测的研究主要集中在改进定向边界框的表示上,但忽略了遥感场景中呈现的独特先验知识。这种先验知识可能很有用,因为在没有参考足够远距离上下文的情况下,可能会错误地检测微小的遥感物体,并且不同类型物体所需的远距离上下文可能会有所不同。在本文中,我们考虑到这些先验并提出了大型选择性核网络(LSKNet)。LSKNet可以动态调整其大的空间感受野,以更好地模拟遥感场景中各种物体的测距上下文。据我们所知,这是遥感物体检测领域首次探索大型选择性核机制。没有花里胡哨的东西,LSKNet 在标准基准上设置了新的最先进的分数,即 HRSC2016 (98.46% mAP)、DOTA-v1.0 (81.85% mAP) 和 FAIR1M-v1.0 (47.87% mAP)。基于类似的技术,我们在2022年大湾区国际算法大赛中获得第二名。

请添加图片描述

论文方法

请添加图片描述

图展示了一个LSKNet Bolck的图示,是主干网中的一个重复块,其灵感来自ConvNeXt, PVT-v2, VAN, Conv2Former 和 MetaFormer。每个LSKNet块由两个剩余子块组成:大核选择(LK Selection)子块和前馈网络(FFN)子块。LK选择子块根据需要动态地调整网络的感受野。前馈网络子块用于通道混合和特征细化,由一个全连接层、一个深度卷积、一个GELU激活和第二个全连接层组成的序列。核心模块LSK Module被嵌入到LK选择子块中。它由一连串的大内核卷积和一个空间内核选择机制组成。
请添加图片描述

更多论文细节参考: https://arxiv.org/pdf/2303.09030.pdf

论文实验

请添加图片描述

一、 代码| 将LSKNet结构应用到RT-DETR核心代码

还没加群的私信博主加RT-DETR交流群

改进核心代码(EMO + RT-DETR)

新增部分

首先在ultralytics/nn/modules文件夹下,创建一个lsk.py文件,新增以下代码

-腾讯文档中查看

修改部分

在ultralytics/nn/modules/init.py中导入 定义在lsk.py里面的模块

from .lsk import LSKB

'iRMB' 加到 __all__ = [...] 里面

第一步:
ultralytics/nn/tasks.py文件中

from ultralytics.nn.lsk import LSKB

然后在 在tasks.py中配置
找到

elif m is nn.BatchNorm2d:
   args = [ch[f]]

在这句上面加一个

       elif m is LSKB:
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, *args[1:]]

RT-DETR-LSK网络配置文件

RT-DETR-lsk.yaml

周三更新在群文档中

运行训练命令

运行RT-DETR的训练命令即可

python train.py --cfg yolov8-lsk.py

参考

https://arxiv.org/pdf/2303.09030.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值