Batchnorm和Layernorm的区别

文章介绍了深度学习训练中常用的两种归一化方法:BatchNorm和LayerNorm。BatchNorm针对每个batch的同一通道计算均值和方差,适用于CV领域,而LayerNorm则按特征矩阵的通道进行计算,常用于自然语言处理。此外,文章提到了其他归一化技术,如GN和IN。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


  在深度学习训练中,我们经常会遇到这两个归一化操作,他们之间有什么区别呢?我们来简单介绍一下:

一.BatchNorm:

  在深度学习训练的时候我们的数据如果没有经过预处理,有可能会出现梯度消失或者梯度爆炸的情况,那么应该怎么解决这个问题呢?所以我们经常会在训练之前和训练的时候使用标准处理,在CV中最常用的就是BN。我们先来看张动图:
在这里插入图片描述
  从上面的动图中可以看出,BN是针对batch而言的,针对每一个batch的同一通道计算均值和方差进行归一化,因此batch越大,归一化的结果越好。
  需要注意的是BN中实际上是四个参数,除了公式中的 α \alpha α β \beta β 之外,还有两个“隐含”的参数,统计均值和方差,我们知道在计算BN的时候是针对一个batch的,而batch的选择和整体的样本均值和方差是有差距的,因此,在计算的时候要不断地更新统计到的均值和方差,作为最终的统计均值和方差。

二.LayerNorm:

  简单介绍layernorm,就是batchborm是针对一个batch的每个通道之间进行计算均值和方差,而layernorm是针对一个特征矩阵之间按照通道进行计算均值和方差,他只有两个参数,公式和BN是一样的。所以在CV中基本上不用这个归一化,没有什么意义。
  除此之外,还有其他的归一化方法,如:GNIN等,用到的时候可以自己查阅一下资料,下面贴张图:
在这里插入图片描述
  以上只是对batchnormlayernorm做一个简单的介绍,并没有深入剖析,如有错误,敬请指正。

<think>好的,用户想要查找关于YOLOv12训练的资料,包括教程、配置方法和常见问题解决。首先,我需要确认YOLOv12是否真实存在,因为目前主流版本是YOLOv5、YOLOv7和YOLOv8,可能用户可能误写了版本号。如果YOLOv12不存在,可能需要提示用户检查版本名称是否正确。 假设用户确实是指YOLOv12,但可能是个较新或非官方的版本,那么我需要提供般性的YOLO训练指导,并建议用户参考官方文档或社区资源。根据提供的引用内容,引用[2]提到了模型训练的参数规模和训练步骤,这可能与训练配置相关。引用[3]提到了代码实现和框架结构,可以引导用户查看具体实现。 接下来,我需要整理YOLO训练般步骤,包括环境配置、数据集准备、配置文件调整、训练参数设置以及常见问题。例如,环境配置需要PyTorch、CUDA等;数据集需要符合YOLO格式;配置文件可能涉及模型结构和超参数。常见问题可能包括CUDA内存不足、损失不收敛等,解决方案涉及调整批量大小、学习率等。 同时,需要生成相关问题,帮助用户进步探索,比如性能优化方法、多GPU训练、模型评估指标等。这些相关问题应基于YOLO训练的常见挑战和用户可能的需求。 最后,确保回答符合格式要求,使用正确的中文,数学公式用$...$,独立公式用$$...$$,但在这个问题中可能涉及较少数学内容。引用标记需要自然添加,例如引用[2]关于训练步骤和参数,引用[3]关于代码实现。</think>### YOLOv12训练指南与配置问题解析 目前主流YOLO系列模型(如YOLOv5/YOLOv7/YOLOv8)的训练流程具有相似性。若您提到的YOLOv12是某特定版本,建议先确认其官方文档。以下提供通用训练指南: #### 、环境配置 1. **基础依赖**: - Python 3.8+ - PyTorch 1.8+(需与CUDA版本匹配) - CUDA 11.1+(NVIDIA GPU训练必备) ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113 ``` 2. **专用工具包**: - YOLO官方仓库(如Ultralytics版本) ```bash git clone https://github.com/ultralytics/yolov5 && cd yolov5 pip install -r requirements.txt ``` #### 二、数据集准备 1. **标准格式**: ```text datasets/ train/ images/ labels/ val/ images/ labels/ ``` 标注文件为.txt格式,每行表示个目标:`class_id x_center y_center width height`(归化坐标)[^3] 2. **配置文件**: - 创建`data/custom.yaml`: ```yaml train: ../datasets/train/images val: ../datasets/val/images nc: 80 # 类别数 names: ['person', 'car', ...] # 类别名称 ``` #### 三、训练配置 1. **模型选择**: ```bash python train.py --img 640 --batch 16 --epochs 300 --data custom.yaml --weights yolov5s.pt ``` - `--img`:输入图像尺寸 - `--batch`:批次大小(受GPU显存限制) - `--weights`:预训练权重路径[^2] 2. **超参数调整**: ```yaml # hyperparameters.yaml lr0: 0.01 # 初始学习率 lrf: 0.2 # 最终学习率 = lr0 * lrf momentum: 0.937 weight_decay: 0.0005 ``` #### 四、常见问题解决 1. **CUDA内存不足**: - 降低`--batch-size` - 使用更小模型(如yolov5s) - 添加`--workers 0`排除数据加载问题 2. **损失不收敛**: - 检查学习率设置:`python train.py --hyp hyp.scratch-low.yaml` - 验证数据集标注准确性 - 尝试冻结骨干网络训练:`--freeze 10` 3. **多GPU训练**: ```bash python -m torch.distributed.launch --nproc_per_node 2 train.py --device 0,1 ``` #### 五、训练监控 1. **TensorBoard集成**: ```bash tensorboard --logdir runs/train ``` 监控指标包括: - 损失函数曲线 - mAP@0.5指标 - 学习率变化曲线
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

I松风水月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值