IEEE TIE2021(顶刊) | 用于异常检测的双向注意力特征金字塔网络 Cosine Non-local

本文提出BAF-Detector,一种结合双向注意力特征金字塔网络(BAFPN)的CNN检测器,用于提升光伏电池缺陷检测效果。BAFPN通过多头余弦非局部注意力模块增强特征表示,解决小尺度缺陷检测问题。实验显示BAF-Detector在多尺度缺陷检测任务中表现出优越性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                             IEEE TIE2021 | 用于缺陷异常检测的双向注意力特征金字塔网络

BAF-Detector: An Efficient CNN-Based Detector for Photovoltaic Cell Defect Detection

Binyi Su, Haiyong Chen, and Zhong Zhou

【导读】

为了解决随着深度学习网络的加深,网络出现的feature vanishment问题,本文提出了一种名为的双向注意力特征融合检测器BAF-Detector,旨在提升多尺度光伏电池缺陷的检测效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

苏打水的杯子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值