泛函分析1-线性空间

Preface

参考摘录于FUNCTIONAL ANALYSIS NOTES——Mr. Andrew Pinchuck

1 Linear Spaces

1.1 linear space

A linear space over a field F \mathbb{F} F is a nonempty set X X X with two operations, F \mathbb{F} F denote either R \mathbb{R} R or C \mathbb{C} C
+ : X × X → X ( +: X \times X \rightarrow X \quad( +:X×XX( called addition ) , ), ), and

⋅ \Large \cdot   : F × X → X : \mathbb{F} \times X \rightarrow X \quad :F×XX (called multiplication)
satisfying the following properties:

[ 1 ] x + y ∈ X [1] x+y \in X [1]x+yX whenever x , y ∈ X x, y \in X x,yX
[2] x + y = y + x x+y=y+x x+y=y+x for all x , y ∈ X x, y \in X x,yX
[3] There exists a unique element in X , X, X, denoted by 0 , such that x + 0 = 0 + x = x x+0=0+x=x x+0=0+x=x for all x ∈ X x \in X xX;
[4] Associated with each x ∈ X x \in X xX is a unique element in X , X, X, denoted by − x , -x, x, such that x + ( − x ) = x+(-x)= x+(x)= − x + x = 0 -x+x=0 x+x=0
[5] ( x + y ) + z = x + ( y + z ) (x+y)+z=x+(y+z) (x+y)+z=x+(y+z) for all x , y , z ∈ X x, y, z \in X x,y,zX

[6] α ⋅ x ∈ X \alpha \cdot x \in X αxX for all x ∈ X x \in X xX and for all α ∈ F \alpha \in \mathbb{F} αF
[ 7 ] α ⋅ ( x + y ) = α ⋅ x + α ⋅ y [7] \alpha \cdot(x+y)=\alpha \cdot x+\alpha \cdot y [7]α(x+y)=αx+αy for all x , y ∈ X x, y \in X x,yX and all α ∈ F \alpha \in \mathbb{F} αF
[ 8 ] ( α + β ) ⋅ x = α ⋅ x + β ⋅ x [8](\alpha+\beta) \cdot x=\alpha \cdot x+\beta \cdot x [8](α+β)x=αx+βx for all x ∈ X x \in X xX and all α , β ∈ F \alpha, \beta \in \mathbb{F} α,βF
[ 9 ] ( α β ) ⋅ x = α ⋅ ( β ⋅ x ) [9](\alpha \beta) \cdot x=\alpha \cdot(\beta \cdot x) [9](αβ)x=α(βx) for all x ∈ X x \in X xX and all α , β ∈ F \alpha, \beta \in \mathbb{F} α,βF
[ 10 ] 1 ⋅ x = x [10] 1 \cdot x=x [10]1x=x for all x ∈ X x \in X xX
representation: ( X , F , + , ⋅ ) (X, \mathbb{F},+, \cdot) (X,F,+,)

then a linear space is also called a vector space and its elements are called vectors

Examples

[1] Let X = C [ a , b ] = { x : [ a , b ] → F ∣ x X=\mathcal{C}[a, b]=\{x:[a, b] \rightarrow \mathbb{F} \mid x X=C[a,b]={x:[a,b]Fx is continuous }. Define the operations of addition and scalar multiplication pointwise: For all x , y ∈ X x, y \in X x,yX and all α ∈ R , \alpha \in \mathbb{R}, αR, define
( x + y ) ( t ) = x ( t ) + y ( t )  and  ( α ⋅ x ) ( t ) = α x ( t ) }  for all  t ∈ [ a , b ] \left.\begin{array}{ll} (x+y)(t) & =x(t)+y(t) \text { and } \\ (\alpha \cdot x)(t) & =\alpha x(t) \end{array}\right\} \text { for all } t \in[a, b] (x+y)(t)(αx)(t)=x(t)+y(t) and =αx(t)} for all t[a,b]
Then C [ a , b ] \mathcal{C}[a, b] C[a,b] is a real vector space.

Sequence: Informally, a sequence in X X X is a list of numbers indexed by N . \mathbb{N} . N. Equivalently, a sequence in X X X is a function x : N → X x: \mathbb{N} \rightarrow X x:NX given by n ↦ x ( n ) = x n . n \mapsto x(n)=x_{n} . nx(n)=xn. We shall denote a sequence x 1 , x 2 , … x_{1}, x_{2}, \ldots x1,x2, by
x = ( x 1 , x 2 , … ) = ( x n ) 1 ∞ x=\left(x_{1}, x_{2}, \ldots\right)=\left(x_{n}\right)_{1}^{\infty} x=(x1,x2,)=(xn)1
[2] The sequence space s. Let s denote the set of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 of real or complex numbers. Define the operations of addition and scalar multiplication pointwise: For all x = x= x= ( x 1 , x 2 , … ) , y = ( y 1 , y 2 , … ) ∈ s \left(x_{1}, x_{2}, \ldots\right), y=\left(y_{1}, y_{2}, \ldots\right) \in \mathbf{s} (x1,x2,),y=(y1,y2,)s and all α ∈ F , \alpha \in \mathbb{F}, αF, define
x + y = ( x 1 + y 1 , x 2 + y 2 , … ) α ⋅ x = ( α x 1 , α x 2 , … ) \begin{aligned} x+y &=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \\ \alpha \cdot x &=\left(\alpha x_{1}, \alpha x_{2}, \ldots\right) \end{aligned} x+yαx=(x1+y1,x2+y2,)=(αx1,αx2,)
Then s \mathbf{s} s is a linear space over F \mathbb{F} F.

[3] The sequence space ℓ ∞ . \ell_{\infty} . . Let ℓ ∞ = ℓ ∞ ( N ) \ell_{\infty}=\ell_{\infty}(\mathbb{N}) =(N) denote the set of all bounded sequences of real or complex numbers. That is, all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 such that
sup ⁡ i ∈ N ∣ x i ∣ < ∞ \sup _{i \in \mathbb{N}}\left|x_{i}\right|<\infty iNsupxi<
Define the operations of addition and scalar multiplication pointwise as in [2]. Then ℓ ∞ \ell_{\infty} is a linear space over F \mathbb{F} F.

[4] The sequence space ℓ p = ℓ p ( N ) , 1 ≤ p < ∞ \ell_{p}=\ell_{p}(\mathbb{N}), \quad 1 \leq p<\infty p=p(N),1p<. Let ℓ p \ell_{p} p denote the set of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 of real or complex numbers satisfying the condition
∑ i = 1 ∞ ∣ x i ∣ p < ∞ \sum_{i=1}^{\infty}\left|x_{i}\right|^{p}<\infty i=1xip<
Define the operations of addition and scalar multiplication pointwise: For all x = ( x n ) , y = x=\left(x_{n}\right), y= x=(xn),y= ( y n ) \left(y_{n}\right) (yn) in ℓ p \ell_{p} p and all α ∈ F , \alpha \in \mathbb{F}, αF, define
x + y = ( x 1 + y 1 , x 2 + y 2 , … ) α ⋅ x = ( α x 1 , α x 2 , … ) \begin{aligned} x+y &=\left(x_{1}+y_{1}, x_{2}+y_{2}, \ldots\right) \\ \alpha \cdot x &=\left(\alpha x_{1}, \alpha x_{2}, \ldots\right) \end{aligned} x+yαx=(x1+y1,x2+y2,)=(αx1,αx2,)
[5] The sequence space c = c ( N ) \mathbf{c}=\mathbf{c}(\mathbb{N}) c=c(N). Let c \mathbf{c} c denote the set of all convergent sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 of real or complex numbers. That is, c \mathbf{c} c is the set of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 such that lim ⁡ n → ∞ x n \lim _{n \rightarrow \infty} x_{n} limnxn exists. Define the operations of addition and scalar multiplication pointwise as in [2]. Then c \mathbf{c} c is a linear space over F \mathbb{F} F.

[6] The sequence space c 0 = c 0 ( N ) . \mathbf{c}_{0}=\mathbf{c}_{0}(\mathbb{N}) . c0=c0(N). Let c 0 \mathbf{c}_{0} c0 denote the set of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 of real or complex numbers which converge to zero. That is, c 0 \mathbf{c}_{0} c0 is the space of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 such that lim ⁡ n → ∞ x n = 0. \lim _{n \rightarrow \infty} x_{n}=0 . limnxn=0. Define the operations of addition and scalar multiplication pointwise as in example (3). Then c 0 \mathbf{c}_{0} c0 is a linear space over F \mathbb{F} F.

[7] The sequence space ℓ 0 = ℓ 0 ( N ) . \ell_{0}=\ell_{0}(\mathbb{N}) . 0=0(N). Let ℓ 0 \ell_{0} 0 denote the set of all sequences x = ( x n ) 1 ∞ x=\left(x_{n}\right)_{1}^{\infty} x=(xn)1 of real or complex numbers such that x i = 0 x_{i}=0 xi=0 for all but finitely many indices i i i. Define the operations of addition and scalar multiplication pointwise as in example (3). Then ℓ 0 \ell_{0} 0 is a linear space over F \mathbb{F} F.

1.2 Subsets of a linear space

Notation

Let X X X be a linear space over F , x ∈ X \mathbb{F}, x \in X F,xX and A A A and B B B subsets of X X X and λ ∈ F \lambda \in \mathbb{F} λF. We shall denote by
x + A : = { x + a : a ∈ A } A + B : = { a + b : a ∈ A , b ∈ B } λ A : = { λ a : a ∈ A } \begin{aligned} x+A &:=\{x+a: a \in A\} \\ A+B &:=\{a+b: a \in A, b \in B\} \\ \lambda A &:=\{\lambda a: a \in A\} \end{aligned} x+AA+BλA:={x+a:aA}:={a+b:aA,bB}:={λa:aA}

1.3 Subspaces and Convex Sets

Subspaces

A subset M M M of a linear space X X X is called a linear subspace of X X X if
(a) x + y ∈ M x+y \in M x+yM for all x , y ∈ M , x, y \in M, x,yM, and
(b) λ x ∈ M \lambda x \in M λxM for all x ∈ M x \in M xM and for all λ ∈ F \lambda \in \mathbb{F} λF.
    Clearly, a subset M M M of a linear space X X X is a linear subspace if and only if M + M ⊂ M M+M \subset M M+MM and λ M ⊂ M \lambda M \subset M λMM for all λ ∈ F \lambda \in \mathbb{F} λF.

Then Every linear space X X X has at least two distinguished subspaces: M = { 0 } M=\{0\} M={0} and M = X M=X M=X. These are called the improper subspaces of X . X . X. All other subspaces of X X X are called the proper subspaces.

linear hull

    Let K K K be a subset of a linear space X . X . X. The linear hull of K , K, K, denoted by lin ⁡ ( K ) \operatorname{lin}(K) lin(K) or span ⁡ ( K ) , \operatorname{span}(K), span(K), is the intersection of all linear subspaces of X X X that contain K K K.
    The linear hull of K K K is also called the linear subspace of X X X spanned (or generated) by K K K.
    It is easy to check that the intersection of a collection of linear subspaces of X X X is a linear subspace of X . X . X. It therefore follows that the linear hull of a subset K K K of a linear space X X X is again a linear subspace of X . X . X.
     In fact, the linear hull of a subset K K K of a linear space X X X is the smallest linear subspace of X X X which contains K K K
(实际上,X的子集K的线性包是线性空间X的包含K的最小线性子空间)

proposition

Let K K K be a subset of a linear space X . X . X. Then the linear hull of K K K is the set of all finite linear combinations of elements of K . K . K. That is,
lin ⁡ ( K ) = { ∑ j = 1 n λ j x j ∣ x 1 , x 2 , … , x n ∈ K , λ 1 , λ 2 , … , λ n ∈ F , n ∈ N } \operatorname{lin}(K)=\left\{\sum_{j=1}^{n} \lambda_{j} x_{j} \mid x_{1}, x_{2}, \ldots, x_{n} \in K, \lambda_{1}, \lambda_{2}, \ldots, \lambda_{n} \in \mathbb{F}, n \in \mathbb{N}\right\} lin(K)={j=1nλjxjx1,x2,,xnK,λ1,λ2,,λnF,nN}

Other Definition

    [1]A subset K K K of a linear space X X X is said to be linearly independent if every finite subset { x 1 , x 2 , … , x n } \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} {x1,x2,,xn} of K K K is linearly independent.

    [2]If { x 1 , x 2 , … , x n } \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} {x1,x2,,xn} is a linearly independent subset of X X X and X = lin ⁡ { x 1 , x 2 , … , x n } , \bold {X=\operatorname{lin}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\},} X=lin{x1,x2,,xn}, then X X X is said to have dimension n . n . n. In this case we say that { x 1 , x 2 , … , x n } \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} {x1,x2,,xn} is a basis for the linear space X . X . X. If a linear space X X X does not have a finite basis, we say that it is infinitedimensional.

Convex Sets

Let K K K be a subset of a linear space X . X . X. We say that
(a) K K K is convex if λ x + ( 1 − λ ) y ∈ K \lambda x+(1-\lambda) y \in K λx+(1λ)yK whenever x , y ∈ K x, y \in K x,yK and λ ∈ [ 0 , 1 ] \lambda \in[0,1] λ[0,1]
(b) K K K is balanced if λ x ∈ K \lambda x \in K λxK whenever x ∈ K x \in K xK and ∣ λ ∣ ≤ 1 |\lambda| \leq 1 λ1;
(c) K K K is absolutely convex if K K K is convex and balanced.

Convex hull

Let S S S be a subset of the linear space X . X . X. The convex hull of S , S, S, denoted co ⁡ ( S ) , \operatorname{co}(S), co(S), is the intersection of all convex sets in X X X which contain S S S.

Since the intersection of convex sets is convex, it follows that co ⁡ ( S ) \operatorname{co}(S) co(S) is the smallest convex set which contains S S S.
(实际上,X子集S的凸包是X中包含S最小的凸包)

proposition

Let S S S be a nonempty subset of a linear space X . X . X. Then co ⁡ ( S ) \operatorname{co}(S) co(S) is the set of all convex combinations of elements of S . S . S. That is,
co ⁡ ( S ) = { ∑ j = 1 n λ j x j ∣ x 1 , x 2 , … , x n ∈ S , λ j ≥ 0 ∀ j = 1 , 2 , … , n , ∑ j = 1 n λ j = 1 , n ∈ N } \operatorname{co}(S)=\left\{\sum_{j=1}^{n} \lambda_{j} x_{j} \mid x_{1}, x_{2}, \ldots, x_{n} \in S, \lambda_{j} \geq 0 \forall j=1,2, \ldots, n, \sum_{j=1}^{n} \lambda_{j}=1, n \in \mathbb{N}\right\} co(S)={j=1nλjxjx1,x2,,xnS,λj0j=1,2,,n,j=1nλj=1,nN}

Remark

[1] K K K is absolutely convex if and only if λ x + μ y ∈ K \lambda x+\mu y \in K λx+μyK whenever x , y ∈ K x, y \in K x,yK and ∣ λ ∣ + ∣ μ ∣ ≤ 1 |\lambda|+|\mu| \leq 1 λ+μ1
[2] Every linear subspace is absolutely convex.
(每个线性子空间都是绝对凸的)

1.4 Quotient Space

equivalence relation

  1. A relation R \mathcal{R} R on a set X X X is any subset R \mathcal{R} R of the product X × X , X \times X, X×X, i.e., R \mathcal{R} R consists of specific ordered pairs ( x , y ) , (x, y), (x,y), with x ∈ X x \in X xX and y ∈ X y \in X yX

  2. An equivalence relation on X X X is a relation R \mathcal{R} R that satisfies the following properties, where the notation x ∼ y x \sim y xy means that ( x , y ) ∈ R (x, y) \in \mathcal{R} (x,y)R :
    reflexivity : x ∼ x \quad x \sim x xx for all x ∈ X x \in X xX

    symmetry : x ∼ y \quad x \sim y xy implies y ∼ x y \sim x yx

    transitivity : x ∼ y x \sim y xy and y ∼ z y \sim z yz implies x ∼ z x \sim z xz
    Equivalently, ( x , x ) ∈ R (x, x) \in \mathcal{R} (x,x)R for all x ∈ X ; x \in X ; xX; if ( x , y ) ∈ R , (x, y) \in \mathcal{R}, (x,y)R, then ( y , x ) ∈ R ; (y, x) \in \mathcal{R} ; (y,x)R; if ( x , y ) ∈ R (x, y) \in \mathcal{R} (x,y)R and ( y , z ) ∈ R , (y, z) \in \mathcal{R}, (y,z)R, then ( x , z ) ∈ R (x, z) \in \mathcal{R} (x,z)R
    (等价关系就是满足上面三个状态的有序状态对(x,y))

Definition

    Let M M M be a linear subspace of a linear space X X X over F \mathbb{F} F. For all x , y ∈ X , x, y \in X, x,yX, define
x ≡ y (   m o d   M ) ⟺ x − y ∈ M x \equiv y(\bmod M) \Longleftrightarrow x-y \in M xy(modM)xyM
≡ \equiv defines an equivalence relation on X X X
    then For x ∈ X , x \in X, xX, denote by
[ x ] : = { y ∈ X : x ≡ y (   m o d   M ) } = { y ∈ X : x − y ∈ M } = x + M [x]:=\{y \in X: x \equiv y(\bmod M)\}=\{y \in X: x-y \in M\}=x+M [x]:={yX:xy(modM)}={yX:xyM}=x+M
the coset of x x x with respect to M M M.
    [商空间定义在介里]The quotient space X / M X / M X/M consists of all the equivalence classes [ x ] [x] [x], x ∈ X . x \in X . xX. The quotient space is also called a factor space. moreover,quotient space is also a linear space.
(商空间包含了所有的等价类[x],[x]其实是满足mod规则的一个集合,集合元素属于X。而且mod运算是X作用于它的一个线性空间上的)详情点击介里~

    [商空间的维度定义在介里]The codimension of M M M in X X X is defined as the dimension of the quotient space X / M . X / M . X/M. It is denoted by codim ⁡ ( M ) = dim ⁡ ( X / M ) \operatorname{codim}(M)=\operatorname{dim}(X / M) codim(M)=dim(X/M).
Clearly, if X = M , X=M, X=M, then X / M = { 0 } X / M=\{0\} X/M={0} and so codim ⁡ ( X ) = 0 \operatorname{codim}(X)=0 codim(X)=0

Proposition

Let M M M be a linear subspace of a linear space X X X over F . \mathbb{F} . F. For x , y ∈ X x, y \in X x,yX and λ ∈ F , \lambda \in \mathbb{F}, λF, define the operations
[ x ] + [ y ] = [ x + y ]  and  λ ⋅ [ x ] = [ λ ⋅ x ] [x]+[y]=[x+y] \text { and } \lambda \cdot[x]=[\lambda \cdot x] [x]+[y]=[x+y] and λ[x]=[λx]
Then X / M X / M X/M is a linear space with respect to these operations.

Remark

zero element in the quotient space is the M.

1.5 Direct Sums and Projections

Direct Sums

Let M M M and N N N be linear subspaces of a linear space X X X over F \mathbb{F} F. We say that X X X is a direct sum of M M M and N N N if
X = M + N  and  M ∩ N = { 0 } X=M+N \text { and } M \cap N=\{0\} X=M+N and MN={0}
If X X X is a direct sum of M M M and N , N, N, we write X = M ⊕ N . X=M \oplus N . X=MN. In this case, we say that M M M (resp. N N N ) is an algebraic complement of N N N (resp. M M M ). moreover,for each x,the representation is unique.

projection

    Let M M M and N N N be linear subspaces of a linear space X X X over F \mathbb{F} F such that X = M ⊕ N . X=M \oplus N . X=MN. Define P : X → X P: X \rightarrow X P:XX by P ( x ) = m , P(x)=m, P(x)=m, where x = m + n , x=m+n, x=m+n, with m ∈ M m \in M mM and n ∈ N . n \in N . nN. Then P P P is an algebraic projection of X X X onto M M M along N . N . N. Moreover M = P ( X ) M=P(X) M=P(X) and N = ( I − P ) ( X ) = ker ⁡ ( P ) N=(I-P)(X)=\operatorname{ker}(P) N=(IP)(X)=ker(P)

Linearity of P \mathbf{P} P : Let x = m 1 + n 1 x=m_{1}+n_{1} x=m1+n1 and y = m 2 + n 2 , y=m_{2}+n_{2}, y=m2+n2, where m 1 , m 2 ∈ M m_{1}, m_{2} \in M m1,m2M and n 1 , n 2 ∈ N . n_{1}, n_{2} \in N . n1,n2N. For α ∈ F \alpha \in \mathbb{F} αF
P ( α x + y ) = P ( ( α m 1 + m 2 ) + ( α n 1 + n 2 ) ) = α m 1 + m 2 = α P x + P y P(\alpha x+y)=P\left(\left(\alpha m_{1}+m_{2}\right)+\left(\alpha n_{1}+n_{2}\right)\right)=\alpha m_{1}+m_{2}=\alpha P x+P y P(αx+y)=P((αm1+m2)+(αn1+n2))=αm1+m2=αPx+Py
Idempotency of P : \mathbf{P}: P: Since m = m + 0 , m=m+0, m=m+0, with m ∈ M m \in M mM and 0 ∈ N , 0 \in N, 0N, we have that P m = m P m=m Pm=m and hence P 2 x = P m = m ‾ = P x . \overline{P^{2} x=P m=m}=P x . P2x=Pm=m=Px. That is, P 2 = P P^{2}=P P2=P
Finally, n = x − m = ( I − P ) x . n=x-m=(I-P) x . n=xm=(IP)x. Hence N = ( I − P ) ( X ) . N=(I-P)(X) . N=(IP)(X). Also, P x = 0 P x=0 Px=0 if and only if x ∈ N , x \in N, xN, i.e., ker ⁡ ( P ) = N \operatorname{ker}(P)=N ker(P)=N

1.6 The Holder and Minkowski Inequalities

conjugate exponents and some Inequalities

    Let p p p and q q q be positive real numbers. If 1 < p < ∞ 1<p<\infty 1<p< and 1 p + 1 q = 1 , \frac{1}{p}+\frac{1}{q}=1, p1+q1=1, or if p = 1 p=1 p=1 and q = ∞ , q=\infty, q=, or if p = ∞ p=\infty p= and q = 1 , q=1, q=1, then we say that p p p and q q q are conjugate exponents.

Lemma (Young’s Inequality). Let p p p and q q q be conjugate exponents, with 1 < p , q < ∞ 1<p, q<\infty 1<p,q< and α , β ≥ 0. \alpha, \beta \geq 0 . α,β0. Then
α β ≤ α p p + β q q \alpha \beta \leq \frac{\alpha^{p}}{p}+\frac{\beta^{q}}{q} αβpαp+qβq

Holder Inequalities

(Hölder’s Inequality for sequences). Let ( x n ) ∈ ℓ p \left(x_{n}\right) \in \ell_{p} (xn)p and ( y n ) ∈ ℓ q , \left(y_{n}\right) \in \ell_{q}, (yn)q, where p > 1 p>1 p>1 and 1 / p + 1 / q = 1 1 / p+1 / q=1 1/p+1/q=1. Then
∑ k = 1 ∞ ∣ x k y k ∣ ≤ ( ∑ k = 1 ∞ ∣ x k ∣ p ) 1 p ( ∑ k = 1 ∞ ∣ y k ∣ q ) 1 q \sum_{k=1}^{\infty}\left|x_{k} y_{k}\right| \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{q}\right)^{\frac{1}{q}} k=1xkyk(k=1xkp)p1(k=1ykq)q1

Minkowski Inequalities

Theorem (Minkowski’s Inequality for sequences). Let p > 1 p>1 p>1 and ( x n ) \left(x_{n}\right) (xn) and ( y n ) \left(y_{n}\right) (yn) sequences in ℓ p \ell_{p} p. Then
( ∑ k = 1 ∞ ∣ x k + y k ∣ p ) 1 p ≤ ( ∑ k = 1 ∞ ∣ x k ∣ p ) 1 p + ( ∑ k = 1 ∞ ∣ y k ∣ p ) 1 p \left(\sum_{k=1}^{\infty}\left|x_{k}+y_{k}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{k=1}^{\infty}\left|y_{k}\right|^{p}\right)^{\frac{1}{p}} (k=1xk+ykp)p1(k=1xkp)p1+(k=1ykp)p1

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值