第二章线性时间序列分析及应用(理论)

2.1平稳性

严平稳

若满足(a) E(Yt) = μ ,μ 是一个常数。(b)Cov(Yt , Yt+k) = E[( Yt - μ)( Yt+k - μ )]=rk 任意两个时期之间的协方差仅依赖于这两个时期的距离。当k确定,这也是常数。则是弱平稳。

2.2相关系数和自相关系数

作者:老冯
链接:https://zhuanlan.zhihu.com/p/54153963

因为时间序列这种数据的特点是一维,勇往直前永不回头。根据这种数据特点,形成了自协方差、自相关函数、偏自相关函数等。看到前面都加了一个自,原因是时间序列没法找到一个别的数据和自己来进行比较;只能自己和自己来比较(Yt , Yt+k)。

a、自协方差 autocovariance

首先回顾下协方差,是衡量两个随机变量X,Y的线性相关性或独立性的一个指标:

现实中,以样本协方差estimate协方差:

那么在平稳性的条件下,自协方差Cov( Xt, Xt+k )== E[( Xt - μ )( Xt+k - μ )] 的estimate:

当k确定,ck 也是个常数,无论 Xt 的位置。

在时间序列{ X1, X2, X3, ..., Xn }中,现实样本为{ x1, x2, x3, ..., xn }。

Xt 与 Xt+k 对应分别的两组样本。比如k=1时,

Xt 的 样本为 { x1, x2, x3, ..., xn },而 Xt+1 的样本为 { x2, x3, x4..., xn }。在平稳性条件下,这两组样本的均值都是:

自相关函数 autocorrelation function(ACF)

Xt 与 Xt+k 的自相关系数即(自协方差 / k=0时的自协方差),分母也等于 Xt 的方差。

所以自相关系数ρk的estimate:

r0 永远等于一, rk称为样本自相关函数(ACF)。

b、自相关图 correlogram

样本xt 与 xt+k,把k从0到n的自相关系数求出并直线如下图所示。 横坐标是lag,即k值

preview

c、混成检验/Ljung-Box test(LB 检验)

acf,q,p = sm.tsa.acf(data,nlags=10,qstat=True)  # 计算10个lag的自相关系数 及p-value
out = np.c_[range(1,11), acf[1:], q, p]
output=pd.DataFrame(out, columns=['lag', "AC", "Q", "P-value"])
output = output.set_index('lag')
output

我们取显著性水平为0.05,可以看出,所有的p-value都小于0.05;则我们拒绝原假设H0。

因此,我们认为该序列是序列相关的。

d、举例

import jqdatasdk as jd
jd.auth('','')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf  #自相关图
from statsmodels.tsa.stattools import acf
from statsmodels.tsa.stattools import pacf
from statsmodels.tsa.stattools import pacf_yw
from statsmodels.tsa.stattools import pacf_ols
from statsmodels.graphics.tsaplots import plot_pacf    #偏自相关图

#%%

data = jd.get_price(security='000001.XSHG', start_date='2020-04-01 09:30:00', 
                    end_date='2020-04-20 09:30:00', frequency='1m',
                    fields=None, skip_paused=False, fq='pre', count=None)
#%%
close = data['close']

#%%
close.ix['2020-04-14'].reset_index(drop=True).plot()

#%%
#自相关图
plot_acf(close.ix['2020-04-14'].reset_index(drop=True)).show()

#%%
# 计算180个lag的自相关系数 及p-value
acf,q,p = acf(close.ix['2020-04-14'].reset_index(drop=True),nlags=180,qstat=True) 
#%%
output=pd.DataFrame({'AC':acf[1:],'Q':q,'P-value':p})

output

上证指数2020-04-14日内分时图

第一种:使用简单收益

                                                                               (自相关系数图)

                                      (AC:自相关系数,Q:Q统计量,P-value:p值)

我们取显著性水平为0.05,可以看出,所有的p-value大于0.05;则我们接受原假设H0。认为这个时间序列不相关

第二种:直接使用时间序列

我们取显著性水平为0.05,可以看出,所有的p-value小于0.05;则我们拒绝原假设H0。认为这个时间序列相关

总结:研究时间序列,金融一般都是针对资产收益率而不是资产价格。

2.3白噪声和线性时间序列 

白噪声:有限均值,有限方差,独立同分布的随机变量序列。若是\large \mu =0,方差为\large \sigma ^2的正态分布,称该序列为高斯白噪声。

2.4简单的自回归模型

2.4.1简单的自回归模型

AR(1)模型                      \large r_{t} = \phi _{0}+\phi _{1}r_{t-1}+a_{t} ,假设{\large a_{t}}是均值为0,方差为\large \sigma ^2的高斯白噪声序列

AR(1)模型的弱平稳性的充分必要条件:自相关函数(ACF)满足 \large \varrho _{l}=\phi _{1}\varrho _{l-1} ,l>0

表明弱平稳AR(1)序列的自相关函数从\large \varrho _{0}=1开始以比率为\large \phi _{1}的指数速度衰减

AR(2)模型                  \large r_{t}=\phi _{0}+\phi_{1}r_{t-1}+\phi_{2}r_{t-2}+a_{t}

弱平稳AR(2)序列的自相关函数呈现出减幅的正弦波状或余弦波状或指数衰减

AR(p)模型

自相关函数的图像呈现出正弦、余弦和指数衰减的混合状

2.4.2实际中怎样识别AR模型

a)偏自相关函数(PACF)

应用多元线性回归中偏F检验的思想,结果表明AR(p)序列的样本偏自相关函数是p后截尾的。

#偏自相关图
plot_pacf(close.ix['2020-04-14'].reset_index(drop=True),lags=100).show()

#%%
#计算偏自相关系数
pacf1=pacf_ols(close.ix['2020-04-14'].reset_index(drop=True),nlags=100)

                                                                                           (偏自相关图)

                                                      (偏自相关系数)

b)信息准则

c)参数估计

常用最小二乘法来估计其参数

d)模型验证

若模型是合理的,则其残差序列应是白噪声,残差的样本自相关函数和Ljung-Box统计量来检验\large \hat{a_{t}}与一个白噪声的接近程度。

2.4.3预测

向前一步预测

误差: \large e_{h}(1)=r_{h+1}-\hat{r}_{h}(1)=a_{h+1}

方差:\large \sigma _{a}^{2}

向前两步预测

误差:\large e_{h}(2)=a_{h+2}+\o _{1}a_{h+1}

方差:\large (1+\o {_{1}}^{2})\sigma {_{a}}^{2}

预测步长的增加会使预测中的不确定性也增加

向前多步预测

2.5简单滑动平均模型 

(推理过程没看懂)

\large \phi _{i}=-\theta _{i}(i>=1)

MA(1)模型:\large r_{t}=c_{0}+a_{t}-\theta _{1}a_{t-1}

MA(2)模型:\large r_{t}=c_{0}+a_{t}-\theta _{1}a_{t-1}-\theta _{2}a_{t-2}

2.5.1MA模型的性质 

a)平稳性

满足MA模型的时间序列必然是弱平稳的

b)自相关函数(计算满足MA模型的时间序列的自相关系数,得出一般的规律)

规律:MA(q)模型,其ACF在间隔为q时不为0,但对l>q,\large \rho _{l}=0。因此,MA(q)序列只与其头q个延迟值线性相关,是一个‘有限记忆’模型

2.5.2识别MA的阶

一个时间序列\large r_{t}具有自相关函数\large \rho _{t}。若\large \rho _{t}!=0但对l>q有\large \rho _{t}=0,则\large r_{t}服从一个MA(q)模型

2.5.3估计

最大似然法(不会)

2.5.4用MA模型预测

MA(1)模型向前1步预测:\large \hat{r}_{h}(1)=c_{0}-\theta _{1}a_{h}

MA(1)模型向前2步预测:\large \hat{r}_{h}(2)=c_{0}

MA(1)向前2步预测即是模型的无条件均值。一般地,对一个MA(q)模型,向前q步以后的预测就达到模型的均值。

2.6简单的ARMA模型

如果时间序列\large r_{t}满足:\large r_{t}-\phi_{1}r_{t-1}=\phi_{0}+a_{t}-\theta_{1}a_{t-1}

其中{\large a_{t}}是白噪声序列,则称\large r_{t}服从ARMA(1,1)模型 。(这算是一种定义?不理解)

2.6.1ARMA(1,1)模型性质

弱平稳性:期望为定值

自相关系数

2.6.2一般的ARMA模型

2.6.3识别ARMA模型

确定(p,q)

2.6.4用ARMA模型预测

2.7单位根非平稳性

非平稳序列叫做单位根非平稳时间序列,例如:资产价格序列。

2.7.1随机游动

时间序列{\large p_{t-1}}满足:    \large p_{t}=p_{t-1}+a_{t} ,其中\large p_{0}是一个实数,他表示这个过程的起始值。{\large a_{t}}是一个白噪声序列。

这样的模型下:股价是不可预测的或者均值回转的。

对任意预测步长l>0 :    \large \hat{p}_{h}(l)=p_{h}

方差:\large l\sigma {_{a}}^{2}

说明:l增大时,方差趋于无穷,故预测无效。但长期来看股指价格走势,并没有出现极端情况,说明随机游走模型在指数上的适合性值得怀疑。对所有i都有\large \varphi _{i}=1,任何过去的抖动\large a_{i-1}\large p_{t}的影响不随时间衰竭。从而,序列具有强记忆性。

2.7.2带漂移的随机游动

\large p_{t}=\mu +p_{t-1}+a_{i}

常数项\large \mu可为正也可为负,则\large p_{t}就为一个有上升趋势或下降趋势时间序列。

2.7.3一般的单位根非平稳模型

ARIMA模型(不懂)

2.7.4单位根检验 

检验资产的对数价格\large p_{t}是否服从一个随机游走或者一个带漂移的随机游走

2.8季节模型

(跳过)

2.9带时间序列误差的回归模型

在线性回归分析中检验残差的前后相关性至关重要(残差的ACF)

1)拟合一个线性回归并检验其残差的前后相关性。

2)如果残差序列是单位根非平稳的,则对响应变量和解释变量做一阶差分,然后对两个差分后的序列进行第一步。若这时的残差序列是平稳的,则对残差识别一个ARMA模型并相应地修改线性回归模型。

3)用最大似然法进行联合估计,并对拟合模型进行检验,看是否需要进一步改进。

 

 

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值