【自控笔记】5.6稳定裕度

一、相角裕度
所谓相角裕度,就是系统在相角方面距离离开临界稳定状态还拥有的储备量。
设系统截止频率为
ω
c
ω_c
ωc,幅值满足条件
A
(
ω
c
)
=
∣
G
(
j
ω
c
H
(
ω
c
)
∣
=
1
A(ω_c)=|G(jω_cH(ω_c)|=1
A(ωc)=∣G(jωcH(ωc)∣=1,则相角裕度满足
∠
G
(
j
ω
c
)
−
γ
=
−
180
°
∠G(jω_c)-γ=-180°
∠G(jωc)−γ=−180°
即
γ
=
180
°
+
∠
G
(
j
ω
c
)
γ=180°+∠G(jω_c)
γ=180°+∠G(jωc)
当 γ > 0 γ>0 γ>0时,系统稳定;当 γ = 0 γ=0 γ=0系统临界稳定;当 γ < 0 γ<0 γ<0时,系统不稳定。
二、幅值裕度
所谓幅值裕度,就是系统在幅值方面距离离开临界稳定状态还拥有的储备量。
设系统穿越频率为
ω
x
ω_x
ωx,相角条件满足
φ
(
ω
x
)
=
∠
G
(
j
ω
x
)
H
(
ω
x
)
=
(
2
k
+
1
)
π
,
k
=
0
,
±
1
,
.
.
.
φ(ω_x)=∠G(jω_x)H(ω_x)=(2k+1)π,k=0,±1,...
φ(ωx)=∠G(jωx)H(ωx)=(2k+1)π,k=0,±1,...,则幅值再增大h倍后,将达到临界稳定条件,即
h
∣
G
(
j
ω
x
)
H
(
ω
x
)
∣
=
1
h|G(jω_x)H(ω_x)|=1
h∣G(jωx)H(ωx)∣=1
即
h
=
1
∣
G
(
j
ω
x
)
H
(
ω
x
)
∣
h=\frac{1}{|G(jω_x)H(ω_x)|}
h=∣G(jωx)H(ωx)∣1
半对数坐标系下
h ( d B ) = − 20 l g ∣ G ( j ω x ) H ( ω x ) ∣ h(dB)=-20lg|G(jω_x)H(ω_x)| h(dB)=−20lg∣G(jωx)H(ωx)∣
当 h > 1 ( 或 h > 0 d B ) h>1(或h>0dB) h>1(或h>0dB)时,系统稳定;当 h = 1 ( 或 h = 0 d B ) h=1(或h=0dB) h=1(或h=0dB)时,系统临界稳定;当 h < 1 ( 或 h < 0 d B ) h<1(或h<0dB) h<1(或h<0dB)时,系统不稳定。