零阶保持器

零阶保持器是一种常见的工程低通滤波器,它将输入信号保持一个周期,用于数字信号处理。该保持器的传递函数为1/(s-1/s e^(-Ts)),其幅频特性表现为正比于sin(ωT/2)/(ωT/2),相频特性为-ωT/2,导致恢复信号存在差异并可能降低系统稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【自控笔记】6.2零阶保持器

理想低通滤波器在现实中是不存在的,在工程中,最常用的低通滤波器是零阶保持器。这种保持器在一个周期T内的值为常数,其导数为0,故因此而得名。

一、零阶保持器的作用

零阶保持器的作用很简单,就是把输入它的信号保持一个周期T,其它什么也不干。

如上图所示,当输入信号为 δ ( t ) δ(t) δ(t)是,零阶保持器的输出就是 δ ( t ) δ(t) δ(t)的值,并保持一个周期。同理当输入信号为 e ∗ ( t ) e^*(t) e(t)时,其输出就是各个离散信号点保持一个周期,还原出连续信号。

由此往下,研究零阶保持器的传递函数,能够了解使用零阶保持器恢复信号对原信号的差别。

二、零阶保持器的传递函数

零阶保持器的时域函数如下:
g h ( t ) = 1 ( t ) − 1 ( t − T ) g_h(t)=1(t)-1(t-T) gh(t)=1(t)1(tT)
可以想象一下,它的时域函数在T以前是单位阶跃函数1(t),当t≥T时,1(t)-1(t-T)的值就为零了。所以它的时域图像是在一个周期T内的单位阶跃函数。

g h ( t ) g_h(t) gh(t)进行拉普拉斯变换即可得到它的传递函数:
G h ( s ) = L [ g h ( t ) ] = 1 s − 1 s e − T s = 1 − e − T s s G_h(s)=L[g_h(t)]=\frac{1}{s}-\frac{1}{s}e^{-Ts}=\frac{1-e^{-Ts}}{s} Gh(s)=L[gh(t)]=s1s1eTs=s1eTs

s = j ω s=jω s=jω可以得出零阶保持器的幅频特性
∣ G h ( j ω ) ∣ = T ⋅ s i n ( ω T / 2 ) ω T / 2 |G_h(jω)|=T·\frac{sin(ωT/2)}{ωT/2} Gh(jω)=TωT/2sin(ωT/2)
零阶保持器的相频特性
φ h ( ω ) = − ω T 2 φ_h(ω)=-\frac{ωT}{2} φh(ω)=2ωT
其中T为采样周期,采样频率 ω s = 2 π T ω_s=\frac{2π}{T} ωs=T2π。因此零阶保持器的幅频特性和相频特性的图像如下:

三、零阶保持器对信号的影响

观察零阶保持器的频率特性曲线,可以看出,它不仅采样信号的主频通过,还能使部分高频分量通过,所以恢复的信号有一定的差异。观察它的相频特性曲线,它的相频是正比于频率相位滞后的,即引入零阶保持器会使系统的相角裕度损失,造成系统稳定性下降。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值