隐私计算:多方安全计算,联邦学习,可信执行环境可信执行环境

本文介绍了隐私计算的三个核心技术:多方安全计算,包括同态加密、秘密共享和不经意传输;联邦学习,一种分布式机器学习框架,如横向、纵向联邦学习和联邦迁移学习;以及可信执行环境,通过软硬件结合确保数据安全。这些技术在保护数据隐私的同时,实现了数据的联合分析和计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

隐私计算

多方安全计算

联邦学习

可信执行环境可信执行环境


隐私计算


隐私计算既能够联合各方进行训练学习,又能保证各方私密教据不被泄露。隐私计算技术可归纳为三类

数据加密与再处理、数据不动而模型动、通过可信环境进行大数据分析与管理,

多方安全计算、联邦机器学习、可信执行环境三大核心技术,下面将分别对三种技术进行介绍,并分析和总结它们的优势与不足。

多方安全计算


多方安全计算是密码学的 子领域,目的是多个参与方从每一方的隐私输入中协同计算某个函教的结果,而不用将这些数据展示出来,

多方安全计算即著名的百万富翁问题! 其目的是解决两人百万富翁在不泄露自己的财产信息的情况下来比较谁更富有。Golgrelch等推广到了多方共同参与的场冒如今多方安全计算衍生出同态加密、秘密共享、不经意传输和混淆电

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值