【揭秘】联邦学习:模型更新频率背后的秘密

1361 篇文章 ¥199.90 ¥299.90
834 篇文章 ¥199.90 ¥299.90
759 篇文章 ¥199.90 ¥299.90

目录

【揭秘】联邦学习:模型更新频率背后的秘密

更新频率

示例一:基于梯度下降的联邦学习

示例二:Federated Averaging(FedAvg)算法

示例三:智能家居系统中的联邦学习

示例四:自动驾驶汽车中的联邦学习


【揭秘】联邦学习:模型更新频率背后的秘密

你是否好奇,在联邦学习(Federated Learning,FL)这一前沿技术中,模型的更新频率是如何被决定的?它是否真的如我们所想,有一个固定的更新周期?答案可能出乎你的意料!

在联邦学习的世界里,每个参与者,无论是移动设备还是组织,都在用自己的数据进行着本地模型的训练。他们定期将这些训练结果,如梯度或模型参数,上传到中央服务器。而中央服务器则像一位智慧的指挥官,负责将这些来自四面八方的训练结果进行聚合,从而更新全局模型。这一过程如同一个无尽的循环,不断迭代,直至全局模型达到预定的性能巅峰,或满足其他特定的停止条件。

然而,你是否知道,这个看似有序的迭代过程,其背后的模型更新频率却是灵活多变的?它并非一成不变,而是受到多种因素的共同影响,如参与者的计算能力、训练样本量、吞吐量,以及联邦学习协议的具体设置等。这意味着,每一次的模型更新,都可能是一次全新的探索,充满了未知和惊喜。

那么ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值