目录
示例二:Federated Averaging(FedAvg)算法
【揭秘】联邦学习:模型更新频率背后的秘密
你是否好奇,在联邦学习(Federated Learning,FL)这一前沿技术中,模型的更新频率是如何被决定的?它是否真的如我们所想,有一个固定的更新周期?答案可能出乎你的意料!
在联邦学习的世界里,每个参与者,无论是移动设备还是组织,都在用自己的数据进行着本地模型的训练。他们定期将这些训练结果,如梯度或模型参数,上传到中央服务器。而中央服务器则像一位智慧的指挥官,负责将这些来自四面八方的训练结果进行聚合,从而更新全局模型。这一过程如同一个无尽的循环,不断迭代,直至全局模型达到预定的性能巅峰,或满足其他特定的停止条件。
然而,你是否知道,这个看似有序的迭代过程,其背后的模型更新频率却是灵活多变的?它并非一成不变,而是受到多种因素的共同影响,如参与者的计算能力、训练样本量、吞吐量,以及联邦学习协议的具体设置等。这意味着,每一次的模型更新,都可能是一次全新的探索,充满了未知和惊喜。
那么ÿ