大语言模型 精心设计提示(Prompt) 提升模型性能:ICL
1. 《Chain of Thought Prompting Elicits Reasoning in Large Language Models》
- 核心原理:
- 思维链提示(Chain of Thought Prompting)鼓励模型在生成最终答案之前,先逐步阐述推理过程。这种方式使得模型能够将复杂问题拆解成多个简单步骤,从而更有条理地进行推理,减少错误并提高回答的准确性。
- 示例:
- 普通提示:“5 + 3 × 2 等于多少?”模型可能直接给出答案 16(错误答案)。
- 思维链提示:“首先,根据数学运算的优先级,乘法要先于加法进行。所以先计算 3 × 2,得到 6。然后,再将 5 和 6 相加。那么 5 + 3 × 2 等于多少?”模型会按照推理步骤,先算乘法再算加法,得出正确答案 11。

订阅专栏 解锁全文
5906

被折叠的 条评论
为什么被折叠?



