怎样提升大语言模型(LLM)回答准确率

1383 篇文章 ¥199.90 ¥299.90
834 篇文章 ¥199.90 ¥299.90
781 篇文章 ¥199.90 ¥299.90

怎样提升大语言模型(LLM)回答准确率

在这里插入图片描述

激励与规范类

  • 给予奖励暗示:在提示词中暗示模型如果回答出色会得到“奖励”,虽然模型本身不会真正理解奖励,但这种积极的引导可能会促使其生成更优质内容。例如,“如果你能给出一个逻辑清晰、内容全面且具有创新性的解决方案,就相当于帮助我解决了一个大难题,后续我会有更多有价值的问题和你探讨”。
  • 设定质量标准:明确告知模型你对回答质量的期望,如准确性、深度、创新性等方面的标准。比如,“请给出一个准确性高、具有深度分析且创新性强的市场营销策略,以提升某小众品牌化妆品的知名度”。

知识关联类

  • 引入相关领域知识:在提问时引入与问题相关的其他领域知识,帮助模型建立更广泛的知识联系。例如,在询问关于某种新药物研发进展时,可以提及相关的生物学理论或前期研究成果,“基于目前的基因编辑技
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值