CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network

一、 CDIMC-net 的研究背景

CDIMC-net 的研究背景是基于多视图聚类问题中的不完整视图。在多视图聚类任务中,数据样本通常由多个视图(即不同的特征表示)组成。然而,在实际应用中,由于各种原因,例如数据采集、传输或存储的问题,某些视图的数据可能是不完整的或缺失的。这种不完整视图的存在给多视图聚类带来了挑战。传统的多视图聚类方法通常假设所有视图都是完整的,忽视了不完整视图的影响。因此,研究人员开始关注如何在存在不完整视图的情况下进行有效的聚类。

        在现实世界中,许多数据集包含了多个视图或特征表示,这些视图提供了关于数据的不同方面的信息。多视图聚类是一种利用多个视图的数据进行聚类分析的方法,它可以帮助揭示数据的隐藏模式和结构。然而,传统的多视图聚类方法通常假设所有视图的数据都是完整的,而在实际应用中,数据的某些视图可能会存在缺失或不完整的情况。

二、要解决的问题

 CDIMC-net 的研究问题是如何在存在不完整视图的情况下进行有效的多视图聚类。具体来说,研究人员面临以下问题:

    (1)几乎所有现有的方法都是基于浅层模型的,很难获得有区别的通用表示。

    (2)这些方法通常对噪声或异常值敏感,因为负样本与重要样本被同等对待。

因此,CDIMC-net旨在解决在不完整多视图数据集上进行聚类分析时面临的问题,旨在提供一种能够处理不完整视图和提取准确特征表示的深度学习网络。

三、CDIMC-net的研究动机

      在现实世界的数据集中,往往存在某些视图的数据缺失或不完整的情况。这可能是由于数据获取的限制、传感器故障或数据处理错误等原因造成的。传统的多视图聚类方法通常假设所有视图的数据都是完整的,忽视了数据缺失的情况。这会导致在处理不完整视图数据时出现问题,包括丢失了重要信息、影响聚类结果的准确性以及对异常值(outliers)的敏感性等。

        因此,CDIMC-net的研究动机是通过引入新的深度学习网络架构和策略,克服传统方法在处理不完整视图数据时的局限性。该方法旨在提供一种更具鲁棒性和准确性的多视图聚类方法,能够充分利用不完整视图数据的信息,提高聚类结果的质量和稳定性。

四、CDIMC-net 的解决思路

CDIMC-net采用了一种综合的方法来解决多视图聚类问题。其主要思路如下:

        (1)深度学习网络架构:CDIMC-net引入了深度学习网络来捕捉每个视图的高级特征。它包括视图特定的深度编码器,用于学习每个视图的抽象表示。通过深度编码器,CDIMC-net可以从原始数据中提取出更具有区分度和表征能力的特征,进行数据重排。

        (2)图嵌入策略:为了保留数据的局部结构信息,CDIMC-net采用了图嵌入技术。通过构建最近邻图,它能够捕捉数据样本之间的相似性和关联性。图嵌入策略有助于提取数据的潜在结构,从而更好地进行聚类。

        (3)自适应样本选择:为了应对噪声和异常值的影响,CDIMC-net引入了自适应样本选择策略。它通过自主学习样本的可靠性和置信度来选择最具代表性的样本进行模型训练。这种策略有助于降低噪声和异常值对聚类结果的干扰,提高模型的鲁棒性。

        综合以上思路,CDIMC-net通过结合深度学习、图嵌入和自适应样本选择的技术,旨在提供一种更强大、更准确的多视图聚类方法。它能够有效地利用多视图数据的信息,克服不完整视图和噪声的挑战,提供更可靠、稳定的聚类结果。

        具体而言,本文提出了一种新的不完整多视图聚类网络,称为认知深度不整多视图聚类网络(CDIMC-net)。该网络通过将特定于视图的深度编码器和图嵌入策略结合到一个框架中,捕获每个视图的高级特征和局部结构。即通过引入自适应的特征表示和选择可靠样本的策略,CDIMC-net能够有效地处理不完整视图数据,并提供更准确、鲁棒的聚类结果。此外,基于人类的认知:从易到难的进行学习,还引入一种 self-paced的策略来选择置信度高的样本来进行模型训练,以减少异常值的负面影响。即人的认知形式如下:

  •   不同形式的特征学习编码器获取高级特征和局部特征
  •   以基于认知的方式剔除边际样本的负面影响

五、贡献

(1)深度学习框架:CDIMC-net 引入了深度学习框架来处理多视图数据。它采用视图特定的深度编码器来学习每个视图的抽象表示,从而提取出更具有区分度和表征能力的特征。这种深度学习框架为多视图聚类提供了更强大的建模能力。
(2)图嵌入策略:CDIMC-net利用图嵌入技术保留了数据的局部结构信息。通过构建最近邻图,它能够捕捉数据样本之间的相似性和关联性。这种图嵌入策略有助于提取数据的潜在结构,从而更好地进行聚类。
(3)自适应样本选择:CDIMC-net引入了自适应样本选择策略来应对噪声和异常值。它通过自主学习样本的可靠性和置信度,选择最具代表性的样本进行模型训练。这种策略有助于降低噪声和异常值对聚类结果的干扰,提高模型的鲁棒性。
(4)性能优越性:CDIMC-net 在多个不完整数据集上进行了实验证明其优于现有的不完整多视图聚类方法。通过采用深度学习框架和图嵌入策略,以及自适应样本选择,CDIMC-net能够更好地利用多视图数据的信息,提供更准确、稳定的聚类结果。
        综上所述,CDIMC-net 通过引入深度学习框架、图嵌入策略和自适应样本选择,提供了一种强大的多视图聚类方法,它在提取特征、保留结构信息和处理噪声方面具有优势,为多视图聚类研究做出了重要贡献。

六、模型浅析

        模型结构:视图特定的深度编码器,self-paced的k-means聚类层,多图嵌入约束。

       该模型可以实现对任意不完整视图的聚类。

1、解释
        对于相同的不完全多视图数据,CDIMC-net分成了两组,上半部分使预训练,下半部分是微调。上半部分的作用就是基于自编码器初始化网络参数,下半部分做微调可以直接copy之前得到的权重参数。
         上半部分的预训练网络中的自编码器由三个部分组成:
        1)最上面的灰色箭头表示数据会先编码再解码做重构,所以对应下面蓝色绿色黑色的自编码器的基本结构。
        2)加入了一个融合层Fusion Layer放在编码解码结构的中间,这个融合层可以减少缺失视图所带来的负面影响。
        3)视图样本会做一个图嵌入的操作,很像NLP中的词嵌入,这部操作可以获取样本中的高级特征,相同视图不同样本在embedding空间中的距离是比较近的,确实在现在全是对比学习的主流下使用图嵌入也挺新颖,最后将图嵌入得到的embedding向量和解码之后的结果一起传送到融合层中。最后为整个上部分预训练设计一个损失函数,预训练的操作就结束了。
         下半部分主要做微调和聚类,如图上图所示,经过融合层会得到一个通用表示,这个表示对聚类其实并不友好,因为现在的聚类网络对异常值不敏感,所以还要加以一个自学习的聚类层来增加聚类网络对边际样本的敏感性。
        最后为聚类层和微调分别设计损失函数。后为网络选择合适的优化器,再通过一系列实验调参。

 

2、执行流程

由模型结构的框架图可知,CDIMC-net~的执行流程如下:

  • 对数据进行重新排列和最近邻图构建:将所有视图连接成一个单一的视图,并将缺失实例用相应视图的平均实例进行填充;对堆叠视图进行~kmeans~聚类;根据聚类结果对数据进行重新排序,将分组到同一簇中的样本放在一起;从重新排序的数据中构造最近邻图。
  • 进行网络预训练:利用重新排列后的数据、图和指示矩阵训练~IMC~自编码器网络,其中所有缺失视图的特征都设置为~$0~$;利用随机梯度下降(SGD)来优化损失函数,其中包括重构误差和图嵌入误差。
  • 进行端到端微调:将~IMC~自编码器网络与多视图聚类层级模型相结合,构成~CDIMC-net;利用端到端微调来进一步优化网络性能,最小化聚类损失和重构损失。
  • 在完整和不完整的多视图数据集上进行评估:通过与许多现有的IMC方法进行比较,验证~CDIMC-net~的卓越性能。
3、方法

 

 

 

 七、总结

融合层 在我的理解里其实实质上就是对不同视图的特征表示做加权求和的过程。

聚类层实则就是对传统的聚类算法的进行了重新的设计,这可以原本的聚类算法自适应的调整每次的步长。

需要注意的是:这篇文章其实就是通过先预训练再微调这样的一个无监督的学习方式,还有就是它加深自编码器的网络结构,且在最后设计了一个就是聚类层。图嵌入和对比学习?

 

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
这些配置是为了控制 Azure Cognitive Services 的网关超时、重试超时以及重试次数的。具体作用如下: - `cognitiveservices.net/gateway-timeout`: 控制网关超时的时间,单位为秒。 - `cognitiveservices.net/gateway-retry-timeout`: 控制网关重试超时的时间,单位为秒。 - `cognitiveservices.net/gateway-retry`: 控制网关重试次数。 如果你想测试这些配置是否生效,可以使用 curl 命令进行测试。假设你要测试的是某个 Azure Cognitive Services 的 API,可以使用以下命令: ```bash curl -X POST -H "Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY" -H "Content-Type: application/json" --data '{"text": "YOUR_TEXT"}' "YOUR_API_ENDPOINT" ``` 其中: - `YOUR_SUBSCRIPTION_KEY` 是你的 Azure Cognitive Services 订阅密钥。 - `YOUR_TEXT` 是你要传给 API 的文本。 - `YOUR_API_ENDPOINT` 是你要测试的 API 的终结点。 如果你要测试 `cognitiveservices.net/gateway-timeout` 的配置是否生效,可以在 curl 命令后面加上 `-m` 参数,表示设置超时时间。例如,如果你想设置超时时间为 10 秒,可以使用以下命令: ```bash curl -m 10 -X POST -H "Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY" -H "Content-Type: application/json" --data '{"text": "YOUR_TEXT"}' "YOUR_API_ENDPOINT" ``` 如果你要测试 `cognitiveservices.net/gateway-retry-timeout` 和 `cognitiveservices.net/gateway-retry` 的配置是否生效,可以在 curl 命令后面加上 `-v` 参数,表示输出详细信息。例如,如果你想设置重试超时时间为 5 秒、重试次数为 3 次,可以使用以下命令: ```bash curl -v -X POST -H "Ocp-Apim-Subscription-Key: YOUR_SUBSCRIPTION_KEY" -H "Content-Type: application/json" --data '{"text": "YOUR_TEXT"}' --retry 3 --retry-delay 1 --retry-max-time 5 "YOUR_API_ENDPOINT" ``` 其中: - `--retry` 参数表示设置重试次数。 - `--retry-delay` 参数表示设置重试间隔时间,单位为秒。 - `--retry-max-time` 参数表示设置重试的最长时间,单位为秒。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值