【论文阅读】TRO2022: A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving

TRO2022: A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving

Summary: 探讨planning过程中的优化问题求解,收敛的不确定性和求解的质量研究;转为混合证书整数优化问题作为非线性的初值,然后使得非线性问题能得到较高收敛率和较高效率
Type: TRO
Year: 2022
引用量: 5

参考与前言

论文链接:

A Two-Stage Optimization-Based Motion Planner for Safe Urban Driving

代码链接:无

b站讲解:【看完了 觉得很清晰 值得一看】

学术论文上B站:2022TRO-自动驾驶运动规划_哔哩哔哩_bilibili

本文相关非常细节的公式推导就不详细推了,因为坐标转换挺多的,主要就是指明一下各个部分的意义;整体说清晰吧 也很清晰,但是说复现吧 总觉得不太行 hhh,所以吴院说的对:不开源的都跳过 hhhh

CSDN 链接(以免相关发布地方有些乱码问题):Kin-Zhang 论文阅读 CSDN
博客园链接:Kin-Zhang 论文阅读 cnblog

1. Motivation

因为本身运动规划问题的约束就是存在优先级差异的,比如安全性和运动能力肯定要大于舒适性和能耗之类的。所以对前者用的硬约束,后者则用软约束;两个阶段由 阶段一找到较好的初解,阶段二进行收敛到转换任务后的全局最优解

Contribution

论文写的非常简单,主要贡献点就在构建和如何求解

  1. 提出了应该怎样构建motion planning问题,并使用two-stage进行优化求解
  2. 实验证明此方法可以有高收敛率 和 lower cost solution

2. Method

第一阶段:将前面定义好的非线性问题 进行转换 成为混合整数优化问题,此部分用Gurobi 8.1进行求解

第二阶段:使用第一阶段给出的结果作为初值,解非线性优化问题,此部分用IPOPT进行求解

2.1 框架

2.2 motion synthesis

这一部分主要是构建完整的问题形式,介绍了参考线坐标系和时间坐标系之间的相互转换;相关公式简单解释一下

注意可能习惯了frenet坐标系会有些弄混,这里的大X, Y是世界坐标系,小x, y是参考线坐标系(其实我感觉就是frenet frame)

这是参考线下的正切和法向量,其中 λ \lambda λ 是指从参考线的起点,车沿着参考线走的距离 其实就是图三左边的小x,只是因为泛化公式所以引入了 λ ∈ [ 0 , ∣ P r e f ∣ ] \lambda \in [0, |\mathcal{P}_{ref}|] λ[0,Pref],正切是相对于世界坐标系的,所以是大X, Y各自对参数的导数,类似于 [ Δ X , Δ Y ] T [\Delta X, \Delta Y]^{T} [ΔX,ΔY]T 这样的感觉,法向量是因为和正切是垂直的 也就是点乘为0,所以就可以得到法向量长这样了

t λ = [ ∂ X P ref  ( λ ) ∂ λ ∂ Y P ref  ( λ ) ∂ λ ] , n λ = [ − ∂ Y P ref  ( λ ) ∂ λ ∂ X P ref  ( λ ) ∂ λ ] (1) \mathbf{t}_{\lambda}=\left[\begin{array}{l}\frac{\partial X^{\mathcal{P}_{\text {ref }}(\lambda)}}{\partial \lambda} \\\frac{\partial Y^{\mathcal{P}_{\text {ref }}(\lambda)}}{\partial \lambda}\end{array}\right], \quad \mathbf{n}_{\lambda}=\left[\begin{array}{c}\frac{-\partial Y^{\mathcal{P}_{\text {ref }}(\lambda)}}{\partial \lambda} \\\frac{\partial X^{\mathcal{P}_{\text {ref }}(\lambda)}}{\partial \lambda}\end{array}\right] \tag{1} tλ=[λXPref (λ)λYPref (λ)],nλ=[λYPref (λ)λXPref (λ)](1)

公式一的书写主要是为下面的坐标之间的转换做准备,即使用正切和法向量来转到 小x, y下

一共有三个转换:pose transform, speed transform, covariance tranform

pose 包含 x , y , ϕ x, y, \phi x,y,ϕ 其中有些惊讶的是 x是通过约束求的,即找最小的 λ \lambda λ 让点的欧式距离最小

x = argmin ⁡ λ ( X − X P ref  ( λ ) ) 2 + ( Y − Y P ref  ( λ ) ) 2 x=\underset{\lambda}{\operatorname{argmin}}\left(X-X^{\mathcal{P}_{\text {ref }}}(\lambda)\right)^{2}+\left(Y-Y^{\mathcal{P}_{\text {ref }}}(\lambda)\right)^{2} x=λargmin(XXPref (λ))2+(YYPref (λ))2

  • 不过一般的x都是直接通过for循环找到的(不断step 递进),这里难道是放在约束问题里嘛?

其中y 则是 y ^ = [ X − X P ref  ( x ) Y − Y P ref  ( x ) ] \hat{\mathbf{y}}=\left[\begin{array}{c}X-X^{\mathcal{P}_{\text {ref }}}(x) \\Y-Y^{\mathcal{P}_{\text {ref }}}(x)\end{array}\right] y^=[XXPref (x)YYPref (x)] 即 一个从参考线点指向车中心的向量,然后乘法向量就是参考线坐标系下的y啦,公式也就是: y = 1 ∥ n x ∥ n x ⊤ ⋅ y ^ y=\frac{1}{\left\|\mathbf{n}_{x}\right\|} \mathbf{n}_{x}^{\top} \cdot \hat{\mathbf{y}} y=nx1nxy^

关于covariance呢则是因为每个障碍物都是有pose和协方差的,也就是此文考虑了预测/检测存在的不确定性 并放入约束中;其中不确定性考虑是参考:论文[24] Safe nonlinear trajectory generation for parallel autonomy with a dynamic vehicle model 里的图,如下

整个问题的公式是这样的:

argmin ⁡ z 1 : N , u 0 : N − 1 J ( z 0 : N , u 0 : N − 1 )  s.t.  ∀ k ∈ { 0 , … , N } : z k + 1 = f Δ t ( z k , u k ) S ( z k ) ∩ B out  = ∅ S ( z k ) ∩ [ ⋃ i ∈ { 1 , … , n } S i ( o k i , Σ k i , p ϵ ) ] = ∅ \begin{array}{cl}\underset{\mathbf{z}_{1: N}, \mathbf{u}_{0: N-1}}{\operatorname{argmin}} & J\left(\mathbf{z}_{0: N}, \mathbf{u}_{0: N-1}\right) \\\text { s.t. } & \forall k \in\{0, \ldots, N\}: \\& \mathbf{z}_{k+1}=f_{\Delta t}\left(\mathbf{z}_{k}, \mathbf{u}_{k}\right) \\& \mathcal{S}\left(\mathbf{z}_{k}\right) \cap \mathcal{B}_{\text {out }}=\emptyset \\& \mathcal{S}\left(\mathbf{z}_{k}\right) \cap\left[\bigcup_{i \in\{1, \ldots, n\}} \mathcal{S}^{i}\left(\mathbf{o}_{k}^{i}, \mathbf{\Sigma}_{k}^{i}, p_{\epsilon}\right)\right]=\emptyset\end{array} z1:N,u0:N1argmin s.t. J(z0:N,u0:N1)k{0,,N}:zk+1=fΔt(zk,uk)S(zk)Bout =S(zk)[i{1,,n}Si(oki,Σki,pϵ)]=

其中 最小化的是cost funtion由下面部分进行详细定义 与车位置和control有关;约束解释:

  1. 在任意的k从0,N是指N个离散step下
  2. 是指从时间k的状态 z k = ( x k , y k , ϕ k , v k ) \mathbf z_k = (x_k, y_k, \phi_k, v_k) zk=(xk,yk,ϕk,vk) 当输入 u k = ( a k , δ k ) \mathbf u_k = (a_k, \delta_k) uk=(ak,δk) 时 即加速度和转向角度,变成的下一个状态 z k + 1 z_{k+1} zk+1的dynamical system
  3. 在状态所占据的空间面积 S ( z k ) ⊂ R 2 S(\mathbf z_k) \subset \R^2 S(zk)R2 和不安全的面积area为空集,即两者面积不相交
  4. 是根据上述论文[24] 里每一个障碍物都有一个不确定的包围圈,对于障碍物i,其概率协方差为 Σ k i \Sigma_k^i Σki,预测占据面积概率大于 p ϵ p_{\epsilon} pϵ 也和自身的状态所占据的空间为空集,即不相交

2.3 MILP and Optimization

在2.2里面我们已经把问题定义清楚了,但是还缺乏各个部分的详细公式,这个部分主要就是简化相关的步骤,给出更为详细版的约束,构建的成为的是NLP(非线性问题)主要是以下四个部分,和求解部分一起看,更简洁点

  1. kinematic vehicle model
  2. driveable area collision
  3. traffic participnats’ collision
  4. multiobjective cost function over soft constraints

然后把问题就转成了problem 3 (Receding horizon MILP),虽然有点长:

argmin ⁡ z ‾ m + 1 : m + K , u ‾ m : m + K − 1 ∑ k = m m + K J C M , k ( z ‾ k , u ‾ k )  s.t.  ∀ k ∈ { m , … , m + K } : z ‾ k + 1 = F Δ t ( z ‾ k , u ‾ k ) v x ≥ ρ ∣ v y ∣ a min ⁡ x ≤ a k x ≤ a max ⁡ x a min ⁡ y ≤ a k y ≤ a max ⁡ y ∣ a k + 1 x − a k x ∣ < Δ a max ⁡ x Δ t ∣ a k + 1 y − a k y ∣ < Δ a max ⁡ y Δ t v min ⁡ x ≤ v k x ≤ v max ⁡ x v min ⁡ y ≤ v k y ≤ v max ⁡ y d + b l M ( x k ) ≥ y k ≥ b r M ( x k ) − d y k , max ⁡ i − M μ k i ≤ y k , i ∈ { 1 , … , n } \begin{array}{ll}\underset{\overline{\mathbf{z}}_{m+1: m+K}, \overline{\mathbf{u}}_{m: m+K-1}}{\operatorname{argmin}} & \sum_{k=m}^{m+K} J_{\mathcal{C}}^{\mathcal{M}, k}\left(\overline{\mathbf{z}}_{k}, \overline{\mathbf{u}}_{k}\right) \\\text { s.t. } & \forall k \in\{m, \ldots, m+K\}: \\& \overline{\mathbf{z}}_{k+1}=F_{\Delta t}\left(\overline{\mathbf{z}}_{k}, \overline{\mathbf{u}}_{k}\right) \\& v^{x} \geq \rho\left|v^{y}\right| \\& a_{\min }^{x} \leq a_{k}^{x} \leq a_{\max }^{x} \\& a_{\min }^{y} \leq a_{k}^{y} \leq a_{\max }^{y} \\& \left|a_{k+1}^{x}-a_{k}^{x}\right|<\Delta a_{\max }^{x} \Delta t \\& \left|a_{k+1}^{y}-a_{k}^{y}\right|<\Delta a_{\max }^{y} \Delta t \\& v_{\min }^{x} \leq v_{k}^{x} \leq v_{\max }^{x} \\& v_{\min }^{y} \leq v_{k}^{y} \leq v_{\max }^{y} \\& d+b_{l}^{\mathcal{M}}\left(x_{k}\right) \geq y_{k} \geq b_{r}^{\mathcal{M}}\left(x_{k}\right)-d \\& y_{k, \max }^{i}-M \mu_{k}^{i} \leq y_{k}, i \in\{1, \ldots, n\}\end{array} zm+1:m+K,um:m+K1argmin s.t. k=mm+KJCM,k(zk,uk)k{m,,m+K}:zk+1=FΔt(zk,uk)vxρvyaminxakxamaxxaminyakyamaxyak+1xakx<ΔamaxxΔtak+1yaky<ΔamaxyΔtvminxvkxvmaxxvminyvkyvmaxyd+blM(xk)ykbrM(xk)dyk,maxiMμkiyk,i{1,,n}

问题不大,下面一个个解释一下


  1. 在k从m,m+K是指K个离散step下,应该满足一下约束

  2. 首先是常见的自行车模型 → 但实际上在后面说明了,求解时是直接看做质点 emmm ,所以呢大概是这样的:

  3. 然后 因为是质点 如果不加约束的话 那 v_y 速度过大就是横着走了 当然是不行的,所以呢 加了一个限制,其中 ρ \rho ρ为常数, 假设 ϕ k ∈ [ − π 2 , π 2 ] \phi_k\in[-\frac{\pi}{2},\frac{\pi}{2}] ϕk[2π,2π] 也就是不考虑调头

    v x ≥ ρ ∣ v y ∣ (15) v^{x} \geq \rho\left|v^{y}\right| \tag{15} vxρvy(15)

    • 那为啥前面还写那么多自行车模型的 emmm 直接看后面这个部分,有没有前面铺垫丝毫不受影响

      因为还是需要非线性的部分的,是problem 2 会用非线性求解器求解,转成MILP是提前得到一个大致的初解! 我悟了他的贡献点了

3-8 的约束全在加速度不能超过限制,速度不能超过限制,加加速度不能超限,就不过多解释了 emm 就是车都是有极限的 也不可能一脚油门 0.0001s就达到我们想要的300km/h的速度 这个意思

  1. 正常道路的行驶,也就是自身不碰到路沿,其中 b l M b_{l}^{\mathcal{M}} blM 为左路沿,当然假设 b l M > b r M b_{l}^{\mathcal{M}} > b_{r}^{\mathcal{M}} blM>brM,其中d指的是车宽的,简单来讲虽然我们看做了一个质点,但是计算碰撞的时候 还是看做一个长方形,然后奔着最大的那个对角线去, d = ( w 2 + l 2 ) / 2 d=\sqrt{(w^2+l^2)}/2 d=(w2+l2) /2

    d + b l M ( x k ) ≥ y k ≥ b r M ( x k ) − d (16) d+b_{l}^{\mathcal{M}}\left(x_{k}\right) \geq y_{k} \geq b_{r}^{\mathcal{M}}\left(x_{k}\right)-d \tag{16} d+blM(xk)ykbrM(xk)d(16)

  2. 这个公式有些稍稍难解释,我们回到刚刚的图五,我再copy进来

    然后我们障碍物占据的空间,因为有协方差(所以是subset)其中 L \mathcal L L 是指椭圆的公式哈 就是咱高中学的那种 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1

    S i ⊂ L ( a Σ k i + a shape  , b Σ k i + b shape  ) = L ( a k i , b k i ) (9) \mathcal{S}^{i} \subset \mathcal{L}\left(a_{\boldsymbol{\Sigma}_{k}^{i}}+a_{\text {shape }}, b_{\boldsymbol{\Sigma}_{k}^{i}}+b_{\text {shape }}\right)=\mathcal{L}\left(a_{k}^{i}, b_{k}^{i}\right)\tag{9} SiL(aΣki+ashape ,bΣki+bshape )=L(aki,bki)(9)

    然后我们要找到椭圆边框离车辆长方形最近的地方, d x , d y d_x, d_y dx,dy 为 车辆中心点 x,y 以车身长方形外扩的部分size

    x k , min ⁡ i = [ min ⁡ x L ( a k i , b k i ) ] − d x x k , max ⁡ i = [ max ⁡ x L ( a k i , b k i ) ] + d x y k , min ⁡ i = [ min ⁡ y L ( a k i , b k i ) ] − d y y k , max ⁡ i = [ max ⁡ y L ( a k i , b k i ) ] + d y (17) \begin{aligned}x_{k, \min }^{i} &=\left[\min _{x} \mathcal{L}\left(a_{k}^{i}, b_{k}^{i}\right)\right]-d^{x} \\x_{k, \max }^{i} &=\left[\max _{x} \mathcal{L}\left(a_{k}^{i}, b_{k}^{i}\right)\right]+d^{x} \\y_{k, \min }^{i} &=\left[\min _{y} \mathcal{L}\left(a_{k}^{i}, b_{k}^{i}\right)\right]-d^{y} \\y_{k, \max }^{i} &=\left[\max _{y} \mathcal{L}\left(a_{k}^{i}, b_{k}^{i}\right)\right]+d^{y}\end{aligned} \tag{17} xk,minixk,maxiyk,miniyk,maxi=[xminL(aki,bki)]dx=[xmaxL(aki,bki)]+dx=[yminL(aki,bki)]dy=[ymaxL(aki,bki)]+dy(17)

    就是要满足,也就是说如果不在x范围内,他就一定不在y了,毕竟x是前后 如上图三坐标系

    ( x k , min ⁡ i ≤ x ≤ x k , max ⁡ i ∧ y ≥ y k , min ⁡ i ) ⇒ y ≥ y k , max ⁡ i (18) \left(x_{k, \min }^{i} \leq x \leq x_{k, \max }^{i} \wedge y \geq y_{k, \min }^{i}\right) \Rightarrow y \geq y_{k, \max }^{i} \tag{18} (xk,minixxk,maxiyyk,mini)yyk,maxi(18)

    然后 我们用大-M 法,去得到对应的混合整数约束,也就是当M无穷大时,公式18 可以转为 19

    y k , max ⁡ i − M μ k i ≤ y k  where  μ k i = max ⁡ ( x k , min ⁡ i − x k , 0 ) + max ⁡ ( x k − x k , max ⁡ i , 0 ) + max ⁡ ( y k , min ⁡ i − y k , 0 ) (19) \begin{aligned} y_{k, \max }^{i}-M \mu_{k}^{i} \leq y_{k} \text { where } & \\ \mu_{k}^{i}=\max \left(x_{k, \min }^{i}-x_{k}, 0\right)&+\max \left(x_{k}-x_{k, \max }^{i}, 0\right) \\ &+\max \left(y_{k, \min }^{i}-y_{k}, 0\right) \end{aligned} \tag{19} yk,maxiMμkiyk where μki=max(xk,minixk,0)+max(xkxk,maxi,0)+max(yk,miniyk,0)(19)

最后则是我们的最小化对象 cost funtion: J ( z 0 : N , u 0 : N − 1 ) = ∑ k = 0 N ∑ ι ∈ I ω ι θ ι ( z k , u k ) J\left(\mathbf{z}_{0: N}, \mathbf{u}_{0: N-1}\right)=\sum_{k=0}^{N} \sum_{\iota \in \mathcal{I}} \omega_{\iota} \theta_{\iota}\left(\mathbf{z}_{k}, \mathbf{u}_{k}\right) J(z0:N,u0:N1)=k=0NιIωιθι(zk,uk)

其中是包含两个的,,其中w是权重哈

  • 去向目标点的进度 也就是离目标点距离,比如目标点x纵向距离,速度是否达到,还有就是距离reference path的横向偏移: θ x = ( x − x g ) 2 , θ v = ( v − v g ) 2 , θ y = y 2 \theta_x=(x-x_g)^2, \theta_v=(v-v_g)^2, \theta_y=y^2 θx=(xxg)2,θv=(vvg)2,θy=y2
  • 则是乘客舒适度由加速度和转角度平方来算,比如 θ a = a 2 , θ δ = δ 2 \theta_a=a^2, \theta_{\delta}=\delta^2 θa=a2,θδ=δ2

但实际上 我们将其也转换到了MILP: J C M , k ( z ‾ , u ‾ ) = ∑ ι ∈ C Ω ι Θ ι ( z ‾ , u ‾ ) J_{\mathcal{C}}^{\mathcal{M}, k}(\overline{\mathbf{z}}, \overline{\mathbf{u}})=\sum_{\iota \in \mathcal{C}} \Omega_{\iota} \Theta_{\iota}(\overline{\mathbf{z}}, \overline{\mathbf{u}}) JCM,k(z,u)=ιCΩιΘι(z,u)

其实吧 和上面的是差不多的,只是不是平方了 是绝对值…

  • Θ x = ∣ x − x g ∣ , Θ v = ∣ v − v g ∣ , Θ y = ∣ y ∣ \Theta_{x}=\left|x-x_{g}\right|, \Theta_{v}=\left|v-v_{g}\right|,\Theta_{y}=\left|y\right| Θx=xxg,Θv=vvg,Θy=y
  • 后者则是仅加速度 Θ a = ∣ a y ∣ \Theta_{a}=\left|a_y\right| Θa=ay

至此,我们介绍完了… 终于求解用的是 K-step receding horizon 滚动时域? 也就是连续求解 N-K个子问题;

整体步骤再梳理一下:

  1. 构建完整问题,是一个非线性的问题
  2. 通过简化某些部分 比如车的模型,一些约束,来将问题转化为混合整数优化问题,然后通过连续求解 N-K 个子问题,得到初解,送到非线性问题里去
  3. 然后非线性求解器拿到初解,进行求解

!啊 我悟了… 所以主要贡献其实就是MILP的转换及求解,这么一看 妙啊… emmm

3. 实验及结果

当然实验部分就是证明:哎 我很快,哎 我的收敛率很高!

https://i-blog.csdnimg.cn/blog_migrate/1afaced9fd606a1e475ebe3d9cba16eb.png

4. Conclusion

我看到了最后发现 哦吼related work原来在最后 hhhh!!!主要就是说明:哎 我们是第一个提出用混合整数优化问题作为NLP solver的warm-start的!

好的… 他承认了 yielding a comparable total runtime to our method 还是一个问题,主要是930ms 做不到真车实验吧… 不过应该是one cycle planning 一个周期的时间吧… 930ms真的还是太长了

碎碎念

  1. 关于实验设备没有细说,已发邮件询问

    仔细看的时候;发现作者竟然都没提实验平台的硬件设置是怎样,就直接给出时间 作为TRO其实有点虎了… 一般对比时间都会给出实验平台的设备以便大家都进行大约的转化,就像学习领域说我在一个1030上训练2天,另一个说我只需要2小时,然后其实他是在一个3090上只需要2小时 hhh

  2. 时间对于planning这任务来说还是太长了,假设仅计算的一个周期,仅考虑planning的计算时间

    给ab发这篇文章后,ab直接质问 这930ms的Planning耗时,搁谁谁能受得了 hhh,然后问了问实车正常 CPU i7-8700 16G内存,是得控制在100-300ms的响应时间的

    再比如,jg做的GPIR 整体的运算周期也是在 10-100ms之间的


赠人点赞 手有余香 😆;正向回馈 才能更好开放记录 hhh

  • 4
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kin-Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值