生成多个维度数据,以仿真图片格式,作为U-net网络的输入

这段代码首先生成了20000个样本,每个样本包含两个128x128通道的数据,通过标准化处理。接着,数据被保存为.pth文件。然后,代码演示了如何加载这些数据。最后,虽然未显示,但可以推断这些数据可能用于训练U-net模型,一种常用于图像分割的深度学习架构。
摘要由CSDN通过智能技术生成

1.生成数据

import torch
import numpy as np

data = []
for i in range(20000):
    x=[]
    y=[]
    for i in range(16384):
        a = np.random.normal(loc=0.0, scale=14, size=None)
        b = np.random.normal(loc=0.0, scale=14, size=None)
        y.append(b)
        x.append(a)

    x_min = min(x)
    x_max = max(x)
    y_min = min(y)
    y_max = max(y)

    for i in range(16384):
        x[i] = (x[i] - x_min) / (x_max - x_min)
        y[i] = (y[i] - y_min) / (y_max - y_min)

    X = np.array(x).reshape(128, 128)
    Y = np.array(y).reshape(128, 128)
    matrix_A = np.array([X,Y])
    neg_tensor = torch.FloatTensor(matrix_A)
    neg_tensor = (neg_tensor, 0)
    data.append(neg_tensor)

torch.save(data, "./output-set/train_data.pth") #D:\python\project\Artificialgan\ArtificialGANFingerprints-main\output-set\data.pth

以上是生成了20000条数据,每条数据是两个通道128*128=16384

2.读取数据

import torch
y = torch.load("D:\python\project\Artificialgan\ArtificialGANFingerprints-main\output-set\data.pth")
print(y)

3.U-net读取该生成的数据

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值