复变函数论9-留数理论及其应用2-用留数定理计算实积分2:∫P(x)/Q(X)dx型积分

本文探讨了如何使用留数定理计算特定类型的实积分,包括∫P(x)/Q(X)dx型和∫P(x)/Q(X)e^(imx)dx型积分。通过引理和定理,证明了在复变函数背景下,留数定理能够有效地处理原函数不易求解的定积分问题,并提供了多个实例进行详细解析。
摘要由CSDN通过智能技术生成

某些实的定积分可应用留数定理进行计算, 尤其是对原函数不易直接求得的定积分和反常积分, 这常是一个有效的方法, 其要点是将它化归为复变函数的周线积分.


二、计算 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x +Q(x)P(x)dx型积分

为了计算这种反常积分, 我们先证明一个引理. 它主要用来估计辅助曲线 Γ \Gamma Γ 上的积分.

引理 6.1

f ( z ) f(z) f(z) 沿圆弧 S R : z = R e i θ ( θ 1 ⩽ θ ⩽ θ 2 , R S_{R}: z=R \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, R\right. SR:z=Reiθ(θ1θθ2,R充分大) 上连续 (图 6.8), 且

lim ⁡ R → + ∞ z f ( z ) = λ \lim \limits_{R \rightarrow+\infty} z f(z)=\lambda R+limzf(z)=λ

S R S_{R} SR 上一致成立 (即与 θ 1 ⩽ θ ⩽ θ 2 \theta_{1} \leqslant \theta \leqslant \theta_{2} θ1θθ2 中的 θ \theta θ 无关),则

lim ⁡ R → + ∞ ∫ S R f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim \limits_{R \rightarrow+\infty} \int_{S_{R}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . R+limSRf(z)dz=i(θ2θ1)λ.

在这里插入图片描述


因为

i ( θ 2 − θ 1 ) λ = λ ∫ S R d z z , \mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda=\lambda \int_{S_{R}} \frac{\mathrm{d} z}{z}, i(θ2θ1)λ=λSRzdz,

于是有

∣ ∫ S R f ( z ) d z − i ( θ 2 − θ 1 ) λ ∣ = ∣ ∫ S R z f ( z ) − λ z   d z ∣ . \left|\int_{S_{R}} f(z) \mathrm{d} z-\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda\right|=\left|\int_{S_{R}} \frac{z f(z)-\lambda}{z} \mathrm{~d} z\right| . SRf(z)dzi(θ2θ1)λ = SRzzf(z)λ dz .

对于任给 ε > 0 \varepsilon>0 ε>0, 由已知条件, 存在 R 0 ( ε ) > 0 R_{0}(\varepsilon)>0 R0(ε)>0, 使当 R > R 0 R>R_{0} R>R0 时, 有不等式

∣ z f ( z ) − λ ∣ < ε θ 2 − θ 1 , z ∈ S R . |z f(z)-\lambda|<\frac{\varepsilon}{\theta_{2}-\theta_{1}}, \quad z \in S_{R} . zf(z)λ<θ2θ1ε,zSR.

于是 (6.10) 不超过 ε θ 2 − θ 1 ⋅ l R = ε \frac{\varepsilon}{\theta_{2}-\theta_{1}} \cdot \frac{l}{R}=\varepsilon θ2θ1εRl=ε(其中 l l l S R S_{R} SR 的长度, 即 l = R ( θ 2 − θ 1 ) l=R\left(\theta_{2}-\theta_{1}\right) l=R(θ2θ1)).

定理 6.7

f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z) 为有理分式, 其中

P ( z ) = c 0 z m + c 1 z m − 1 + ⋯ + c m ( c 0 ≠ 0 ) Q ( z ) = b 0 z n + b 1 z n − 1 + ⋯ + b n ( b 0 ≠ 0 ) \begin{array}{ll} P(z)=c_{0} z^{m}+c_{1} z^{m-1}+\cdots+c_{m} & \left(c_{0} \neq 0\right) \\ Q(z)=b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n} \quad & \left(b_{0} \neq 0\right) \end{array} P(z)=c0zm+c1zm1++cmQ(z)=b0zn+b1zn1++bn(c0=0)(b0=0)

为互质多项式, 且符合条件: (1) n − m ⩾ 2 n-m \geqslant 2 nm2; (2) 在实轴上 Q ( z ) ≠ 0 Q(z) \neq 0 Q(z)=0.于是有

∫ − ∞ + ∞ f ( x ) d x = 2 π i ∑ Im ⁡ a k > 0 Res ⁡ = − a k f ( z ) . \int_{-\infty}^{+\infty} f(x) \mathrm{d} x=2 \pi \mathrm{i} \sum_{\operatorname{Im} a_{k}>0} \operatorname{Res}_{=-a_{k}} f(z) . +f(x)dx=2πiImak>0Res=akf(z).


由条件 (1), (2) 及数学分析的结论, 知 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) \mathrm{d} x +f(x)dx 存在, 且等于它的主值

lim ⁡ R → + ∞ ∫ − R + R f ( x ) d x . \lim \limits_{R \rightarrow+\infty} \int_{-R}^{+R} f(x) \mathrm{d} x . R+limR+Rf(x)dx.

记为

 P.V.  ∫ − ∞ + ∞ f ( x ) d x .  \text { P.V. } \int_{-\infty}^{+\infty} f(x) \mathrm{d} x \text {. }  P.V. +f(x)dx

取上半圆周 Γ R : z = R e i θ ( 0 ⩽ θ ⩽ π ) \Gamma_{R}: z=R \mathrm{e}^{i \theta}(0 \leqslant \theta \leqslant \pi) ΓR:z=Reiθ(0θπ)作为辅助曲线 (图 6.9). 于是, 由线段 [ − R , R ] [-R, R] [R,R] Γ R \Gamma_{R} ΓR合成一周线

在这里插入图片描述
C R C_{R} CR, 先取 R R R 充分大, 使 C R C_{R} CR 内部包含 f ( z ) f(z) f(z)在上半平面内的一切孤立奇点(实际上只有有限个极点). 而由条件 (2), f ( z ) f(z) f(z) C R C_{R} CR 上没有奇点.

按留数定理得

∫ C R f ( z ) d z = 2 π i ∑ Im

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值