复变函数论9-留数理论及其应用2-用留数定理计算实积分2:∫P(x)/Q(X)dx型积分

本文探讨了如何使用留数定理计算特定类型的实积分,包括∫P(x)/Q(X)dx型和∫P(x)/Q(X)e^(imx)dx型积分。通过引理和定理,证明了在复变函数背景下,留数定理能够有效地处理原函数不易求解的定积分问题,并提供了多个实例进行详细解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

某些实的定积分可应用留数定理进行计算, 尤其是对原函数不易直接求得的定积分和反常积分, 这常是一个有效的方法, 其要点是将它化归为复变函数的周线积分.


二、计算 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x +Q(x)P(x)dx型积分

为了计算这种反常积分, 我们先证明一个引理. 它主要用来估计辅助曲线 Γ \Gamma Γ 上的积分.

引理 6.1

f ( z ) f(z) f(z) 沿圆弧 S R : z = R e i θ ( θ 1 ⩽ θ ⩽ θ 2 , R S_{R}: z=R \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, R\right. SR:z=Reiθ(θ1θθ2,R充分大) 上连续 (图 6.8), 且

lim ⁡ R → + ∞ z f ( z ) = λ \lim \limits_{R \rightarrow+\infty} z f(z)=\lambda R+limzf(z)=λ

S R S_{R} SR 上一致成立 (即与 θ 1 ⩽ θ ⩽ θ 2 \theta_{1} \leqslant \theta \leqslant \theta_{2} θ1θθ2 中的 θ \theta θ 无关),则

lim ⁡ R → + ∞ ∫ S R f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim \limits_{R \rightarrow+\infty} \int_{S_{R}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . R+limSRf(z)dz=i(θ2θ1)λ.

在这里插入图片描述


因为

i ( θ 2 − θ 1 ) λ = λ ∫ S R d z z , \mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda=\lambda \int_{S_{R}} \frac{\mathrm{d} z}{z}, i(θ2θ1)λ=λSRzdz,

于是有

∣ ∫ S R f ( z ) d z − i ( θ 2 − θ 1 ) λ ∣ = ∣ ∫ S R z f ( z ) − λ z   d z ∣ . \left|\int_{S_{R}} f(z) \mathrm{d} z-\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda\right|=\left|\int_{S_{R}} \frac{z f(z)-\lambda}{z} \mathrm{~d} z\right| . SRf(z)dzi(θ2θ1)λ = SRzzf(z)λ dz .

对于任给 ε > 0 \varepsilon>0 ε>0, 由已知条件, 存在 R 0 ( ε ) > 0 R_{0}(\varepsilon)>0 R0(ε)>0, 使当 R > R 0 R>R_{0} R>R0 时, 有不等式

∣ z f ( z ) − λ ∣ < ε θ 2 − θ 1 , z ∈ S R . |z f(z)-\lambda|<\frac{\varepsilon}{\theta_{2}-\theta_{1}}, \quad z \in S_{R} . zf(z)λ<θ2θ1ε,zSR.

于是 (6.10) 不超过 ε θ 2 − θ 1 ⋅ l R = ε \frac{\varepsilon}{\theta_{2}-\theta_{1}} \cdot \frac{l}{R}=\varepsilon θ2θ1εRl=ε(其中 l l l S R S_{R} SR 的长度, 即 l = R ( θ 2 − θ 1 ) l=R\left(\theta_{2}-\theta_{1}\right) l=R(θ2θ1)).

定理 6.7

f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z) 为有理分式, 其中

P ( z ) = c 0 z m + c 1 z m − 1 + ⋯ + c m ( c 0 ≠ 0 ) Q ( z ) = b 0 z n + b 1 z n − 1 + ⋯ + b n ( b 0 ≠ 0 ) \begin{array}{ll} P(z)=c_{0} z^{m}+c_{1} z^{m-1}+\cdots+c_{m} & \left(c_{0} \neq 0\right) \\ Q(z)=b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n} \quad & \left(b_{0} \neq 0\right) \end{array} P(z)=c0zm+c1zm1++cmQ(z)=b0zn+b1zn1++bn(c0=0)(b0=0)

为互质多项式, 且符合条件: (1) n − m ⩾ 2 n-m \geqslant 2 nm2; (2) 在实轴上 Q ( z ) ≠ 0 Q(z) \neq 0 Q(z)=0.于是有

∫ − ∞ + ∞ f ( x ) d x = 2 π i ∑ Im ⁡ a k > 0 Res ⁡ = − a k f ( z ) . \int_{-\infty}^{+\infty} f(x) \mathrm{d} x=2 \pi \mathrm{i} \sum_{\operatorname{Im} a_{k}>0} \operatorname{Res}_{=-a_{k}} f(z) . +f(x)dx=2πiImak>0Res=akf(z).


由条件 (1), (2) 及数学分析的结论, 知 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) \mathrm{d} x +f(x)dx 存在, 且等于它的主值

lim ⁡ R → + ∞ ∫ − R + R f ( x ) d x . \lim \limits_{R \rightarrow+\infty} \int_{-R}^{+R} f(x) \mathrm{d} x . R+limR+Rf(x)dx.

记为

 P.V.  ∫ − ∞ + ∞ f ( x ) d x .  \text { P.V. } \int_{-\infty}^{+\infty} f(x) \mathrm{d} x \text {. }  P.V. +f(x)dx

取上半圆周 Γ R : z = R e i θ ( 0 ⩽ θ ⩽ π ) \Gamma_{R}: z=R \mathrm{e}^{i \theta}(0 \leqslant \theta \leqslant \pi) ΓR:z=Reiθ(0θπ)作为辅助曲线 (图 6.9). 于是, 由线段 [ − R , R ] [-R, R] [R,R] Γ R \Gamma_{R} ΓR合成一周线

在这里插入图片描述
C R C_{R} CR, 先取 R R R 充分大, 使 C R C_{R} CR 内部包含 f ( z ) f(z) f(z)在上半平面内的一切孤立奇点(实际上只有有限个极点). 而由条件 (2), f ( z ) f(z) f(z) C R C_{R} CR 上没有奇点.

按留数定理得

∫ C R f ( z ) d z = 2 π i ∑ Im

复变函数的领域内,留数定理是解决积分问题的一个强大工具,尤其是在涉及无穷远点处的积分。当你需要计算一个闭合路径上的复函数积分时,如果该函数在闭合路径内部有有限个奇点,那么积分可以通过计算这些奇点的留数来简化。 参考资源链接:[北理工《复变函数与数理方程》复习精华要点](https://wenku.csdn.net/doc/7sc26rqvqv?spm=1055.2569.3001.10343) 留数定理表述为:如果\( C \)是正向简单闭曲线(即不自相交),\( f(z) \)在其内部解析,除了有限个奇点\( a_1, a_2, ..., a_n \),那么\( f(z) \)沿\( C \)积分为\( 2\pi i \)乘以所有内部奇点留数之和。即: \[ \oint_C f(z) \, dz = 2\pi i \sum \text{Res}(f, a_k) \] 其中,\(\text{Res}(f, a_k)\)表示\( f(z) \)在奇点\( a_k \)处的留数。 为了更具体地说明这个概念,考虑一个典积分问题:计算积分\( \int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx \),其中\( P(x) \)和\( Q(x) \)是关于\( x \)系数多项式,且\( Q(x) \)的次数比\( P(x) \)高,并且\( Q(x) \)没有数根。这个积分可以通过留数定理计算,方法如下: 1. 构造一个半圆路径\( C_R \),使得半圆位于上半平面,并与轴上的积分路径形成封闭路径。 2. 选择半径\( R \)足够大,使得\( Q(x) \)在半圆上的所有根都位于\( C_R \)内部。 3. 计算半圆\( C_R \)上的积分贡献,这通常随\( R \)趋于无穷大而趋于零。 4. 计算\( Q(x) \)的所有奇点处的留数,并应用留数定理。 例如,假设我们要求解积分\( \int_{-\infty}^{\infty} \frac{x^2+1}{x^4+1} dx \)。首先,我们需要找到\( Q(x) = x^4 + 1 \)的根,这些根是四个四次单位根。选择半圆路径包含上半平面的两个根,计算这两个点的留数,然后应用留数定理计算积分。 通过这个示例,我们可以看到留数定理如何将复杂的积分问题转化为求解复数平面上的留数问题,从而极大地简化了积分计算。 对于希望深入掌握这些概念并了解相关计算过程的读者,强烈推荐参阅《北理工《复变函数与数理方程》复习精华要点》。这份资料对复变函数的核心概念进行了详细总结,涵盖了复数的定义、复数的几何表示、复变函数的级数、留数及其应用等多个方面,是学习和复习复变函数及数理方程不可或缺的辅助资料。 参考资源链接:[北理工《复变函数与数理方程》复习精华要点](https://wenku.csdn.net/doc/7sc26rqvqv?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值