某些实的定积分可应用留数定理进行计算, 尤其是对原函数不易直接求得的定积分和反常积分, 这常是一个有效的方法, 其要点是将它化归为复变函数的周线积分.
二、计算 ∫ − ∞ + ∞ P ( x ) Q ( x ) d x \int_{-\infty}^{+\infty} \frac{P(x)}{Q(x)} \mathrm{d} x ∫−∞+∞Q(x)P(x)dx型积分
为了计算这种反常积分, 我们先证明一个引理. 它主要用来估计辅助曲线 Γ \Gamma Γ 上的积分.
引理 6.1
设 f ( z ) f(z) f(z) 沿圆弧 S R : z = R e i θ ( θ 1 ⩽ θ ⩽ θ 2 , R S_{R}: z=R \mathrm{e}^{i \theta}\left(\theta_{1} \leqslant \theta \leqslant \theta_{2}, R\right. SR:z=Reiθ(θ1⩽θ⩽θ2,R充分大) 上连续 (图 6.8), 且
lim R → + ∞ z f ( z ) = λ \lim \limits_{R \rightarrow+\infty} z f(z)=\lambda R→+∞limzf(z)=λ
于 S R S_{R} SR 上一致成立 (即与 θ 1 ⩽ θ ⩽ θ 2 \theta_{1} \leqslant \theta \leqslant \theta_{2} θ1⩽θ⩽θ2 中的 θ \theta θ 无关),则
lim R → + ∞ ∫ S R f ( z ) d z = i ( θ 2 − θ 1 ) λ . \lim \limits_{R \rightarrow+\infty} \int_{S_{R}} f(z) \mathrm{d} z=\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda . R→+∞lim∫SRf(z)dz=i(θ2−θ1)λ.
证
因为
i ( θ 2 − θ 1 ) λ = λ ∫ S R d z z , \mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda=\lambda \int_{S_{R}} \frac{\mathrm{d} z}{z}, i(θ2−θ1)λ=λ∫SRzdz,
于是有
∣ ∫ S R f ( z ) d z − i ( θ 2 − θ 1 ) λ ∣ = ∣ ∫ S R z f ( z ) − λ z d z ∣ . \left|\int_{S_{R}} f(z) \mathrm{d} z-\mathrm{i}\left(\theta_{2}-\theta_{1}\right) \lambda\right|=\left|\int_{S_{R}} \frac{z f(z)-\lambda}{z} \mathrm{~d} z\right| . ∫SRf(z)dz−i(θ2−θ1)λ = ∫SRzzf(z)−λ dz .
对于任给 ε > 0 \varepsilon>0 ε>0, 由已知条件, 存在 R 0 ( ε ) > 0 R_{0}(\varepsilon)>0 R0(ε)>0, 使当 R > R 0 R>R_{0} R>R0 时, 有不等式
∣ z f ( z ) − λ ∣ < ε θ 2 − θ 1 , z ∈ S R . |z f(z)-\lambda|<\frac{\varepsilon}{\theta_{2}-\theta_{1}}, \quad z \in S_{R} . ∣zf(z)−λ∣<θ2−θ1ε,z∈SR.
于是 (6.10) 不超过 ε θ 2 − θ 1 ⋅ l R = ε \frac{\varepsilon}{\theta_{2}-\theta_{1}} \cdot \frac{l}{R}=\varepsilon θ2−θ1ε⋅Rl=ε(其中 l l l 为 S R S_{R} SR 的长度, 即 l = R ( θ 2 − θ 1 ) l=R\left(\theta_{2}-\theta_{1}\right) l=R(θ2−θ1)).
定理 6.7
设 f ( z ) = P ( z ) Q ( z ) f(z)=\frac{P(z)}{Q(z)} f(z)=Q(z)P(z) 为有理分式, 其中
P ( z ) = c 0 z m + c 1 z m − 1 + ⋯ + c m ( c 0 ≠ 0 ) Q ( z ) = b 0 z n + b 1 z n − 1 + ⋯ + b n ( b 0 ≠ 0 ) \begin{array}{ll} P(z)=c_{0} z^{m}+c_{1} z^{m-1}+\cdots+c_{m} & \left(c_{0} \neq 0\right) \\ Q(z)=b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n} \quad & \left(b_{0} \neq 0\right) \end{array} P(z)=c0zm+c1zm−1+⋯+cmQ(z)=b0zn+b1zn−1+⋯+bn(c0=0)(b0=0)
为互质多项式, 且符合条件: (1) n − m ⩾ 2 n-m \geqslant 2 n−m⩾2; (2) 在实轴上 Q ( z ) ≠ 0 Q(z) \neq 0 Q(z)=0.于是有
∫ − ∞ + ∞ f ( x ) d x = 2 π i ∑ Im a k > 0 Res = − a k f ( z ) . \int_{-\infty}^{+\infty} f(x) \mathrm{d} x=2 \pi \mathrm{i} \sum_{\operatorname{Im} a_{k}>0} \operatorname{Res}_{=-a_{k}} f(z) . ∫−∞+∞f(x)dx=2πiImak>0∑Res=−akf(z).
证
由条件 (1), (2) 及数学分析的结论, 知 ∫ − ∞ + ∞ f ( x ) d x \int_{-\infty}^{+\infty} f(x) \mathrm{d} x ∫−∞+∞f(x)dx 存在, 且等于它的主值
lim R → + ∞ ∫ − R + R f ( x ) d x . \lim \limits_{R \rightarrow+\infty} \int_{-R}^{+R} f(x) \mathrm{d} x . R→+∞lim∫−R+Rf(x)dx.
记为
P.V. ∫ − ∞ + ∞ f ( x ) d x . \text { P.V. } \int_{-\infty}^{+\infty} f(x) \mathrm{d} x \text {. } P.V. ∫−∞+∞f(x)dx.
取上半圆周 Γ R : z = R e i θ ( 0 ⩽ θ ⩽ π ) \Gamma_{R}: z=R \mathrm{e}^{i \theta}(0 \leqslant \theta \leqslant \pi) ΓR:z=Reiθ(0⩽θ⩽π)作为辅助曲线 (图 6.9). 于是, 由线段 [ − R , R ] [-R, R] [−R,R] 及 Γ R \Gamma_{R} ΓR合成一周线
C R C_{R} CR, 先取 R R R 充分大, 使 C R C_{R} CR 内部包含 f ( z ) f(z) f(z)在上半平面内的一切孤立奇点(实际上只有有限个极点). 而由条件 (2), f ( z ) f(z) f(z)在 C R C_{R} CR 上没有奇点.
按留数定理得
∫ C R f ( z ) d z = 2 π i ∑ Im