任何一个实二次型
f
f
f,都可以经过可逆变换化为唯一规范型
f
=
z
1
2
+
z
2
2
+
…
z
r
2
f=z_1^2+z_2^2 +\dots z_r^2
f=z12+z22+…zr2
其中
r
r
r是
f
f
f的秩
证明:
设可逆变换
X
=
C
Y
X=CY
X=CY化为标准型
f
=
d
1
y
1
2
+
…
d
p
y
p
2
−
d
p
+
1
y
p
+
1
2
−
…
d
r
y
r
2
f=d_1 y_1^2 +\dots d_p y_p^2-d_{p+1}y_{p+1}^2 -\dots d_{r} y_{r}^2
f=d1y12+…dpyp2−dp+1yp+12−…dryr2
其中
d
i
>
0
(
i
=
1
,
2
,
…
,
r
)
d_i>0(i=1,2,\dots,r)
di>0(i=1,2,…,r)
再做
y
i
=
1
d
i
z
i
(
i
=
1
,
2
,
…
,
r
)
y_i=\frac{1}{\sqrt{d_i}} z_i(i=1,2,\dots,r)
yi=di1zi(i=1,2,…,r),化为规范型
f
=
z
1
2
+
z
2
2
+
…
z
p
2
−
z
p
+
1
2
−
⋯
−
z
r
2
f=z_1^2+z_2^2+\dots z_p^2 -z_{p+1}^2-\dots -z_r^2
f=z12+z22+…zp2−zp+12−⋯−zr2
现在证明唯一性
设有两个可逆变换
X
=
C
1
Y
,
X
=
C
2
Z
X=C_1 Y,X=C_2 Z
X=C1Y,X=C2Z
使得
f
=
y
1
2
+
y
2
2
+
…
y
p
2
−
y
p
+
1
2
−
⋯
−
y
r
2
=
z
1
2
+
z
2
2
+
…
z
q
2
−
z
q
+
1
2
−
⋯
−
z
r
2
\begin{aligned} f&=y_1^2+y_2^2+\dots y_p^2 -y_{p+1}^2-\dots -y_r^2\\ &=z_1^2+z_2^2+\dots z_q^2 -z_{q+1}^2-\dots -z_r^2 \end{aligned}
f=y12+y22+…yp2−yp+12−⋯−yr2=z12+z22+…zq2−zq+12−⋯−zr2
现在要证明
p
=
q
p=q
p=q
假设
q
<
p
<
r
q<p<r
q<p<r
设
C
1
=
(
ξ
1
,
ξ
2
,
⋯
,
ξ
n
)
,
C
2
=
(
η
1
,
η
2
,
⋯
,
η
n
)
C_1=(\xi_1,\xi_2,\cdots,\xi_n),C_2=(\eta_1,\eta_2,\cdots,\eta_n)
C1=(ξ1,ξ2,⋯,ξn),C2=(η1,η2,⋯,ηn)
考虑向量组
ξ
1
,
…
,
ξ
p
,
ξ
r
+
1
,
…
,
ξ
n
,
η
q
+
1
,
…
,
η
r
\xi_1,\dots,\xi_p,\xi_{r+1},\dots,\xi_{n},\eta_{q+1},\dots ,\eta_{r}
ξ1,…,ξp,ξr+1,…,ξn,ηq+1,…,ηr
个数
p
+
(
n
−
r
)
+
(
r
−
q
)
=
n
+
(
p
−
q
)
>
n
p+(n-r)+(r-q)=n+(p-q)>n
p+(n−r)+(r−q)=n+(p−q)>n
所以线性相关
存在不全为
0
0
0的数
y
1
,
…
,
y
p
,
y
r
+
1
,
…
,
y
n
,
z
q
+
1
,
…
,
z
r
y_1,\dots,y_p,y_{r+1},\dots ,y_{n},z_{q+1},\dots,z_{r}
y1,…,yp,yr+1,…,yn,zq+1,…,zr
使得
y
1
ξ
1
+
⋯
+
y
p
ξ
p
+
y
r
+
1
ξ
r
+
1
+
⋯
+
y
n
ξ
n
+
z
q
+
1
η
q
+
1
+
⋯
+
z
r
η
r
=
0
y_1\xi_1+\dots +y_p\xi_p+y_{r+1} \xi_{r+1}+\dots +y_{n}\xi_{n}+z_{q+1}\eta_{q+1}+\dots +z_{r}\eta_{r}=0
y1ξ1+⋯+ypξp+yr+1ξr+1+⋯+ynξn+zq+1ηq+1+⋯+zrηr=0
于是
y
1
ξ
1
+
⋯
+
y
p
ξ
p
+
y
r
+
1
ξ
r
+
1
+
⋯
+
y
n
ξ
n
=
−
(
z
q
+
1
η
q
+
1
+
⋯
+
z
r
η
r
)
=
X
≠
0
\begin{aligned} &\quad y_1\xi_1+\dots +y_p\xi_p+y_{r+1} \xi_{r+1}+\dots +y_{n}\xi_{n}\\ &=-(z_{q+1}\eta_{q+1}+\dots +z_{r}\eta_{r})\\ &=X\neq 0 \end{aligned}
y1ξ1+⋯+ypξp+yr+1ξr+1+⋯+ynξn=−(zq+1ηq+1+⋯+zrηr)=X=0
f
(
X
)
=
y
1
2
+
y
2
2
+
⋯
+
y
p
2
≥
0
f(X)=y_1^2+y_2^2+\dots +y_{p}^2\ge 0
f(X)=y12+y22+⋯+yp2≥0
f
(
X
)
=
−
z
q
+
1
2
⋯
−
z
r
2
<
0
f(X)=-z_{q+1}^2\dots -z_{r}^2 < 0
f(X)=−zq+12⋯−zr2<0
矛盾
p
<
q
p<q
p<q同理
所以
p
=
q
p=q
p=q